Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
tagmin
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2023 lúc 0:49

a: (2x-3/2)(|x|-5)=0

=>2x-3/2=0 hoặc |x|-5=0

=>x=3/4 hoặc |x|=5

=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)

b: x-8x^4=0

=>x(1-8x^3)=0

=>x=0 hoặc 1-8x^3=0

=>x=1/2 hoặc x=0

c: x^2-(4x+x^2)-5=0

=>x^2-4x-x^2-5=0

=>-4x-5=0

=>x=-5/4

White Silver
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2021 lúc 19:38

\(\left(x^2-2x+5\right)\left(x+1\right)\left(x-3\right)=m\)

\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)

Đặt \(x^2-2x-3=t\Rightarrow t\in\left[-4;0\right]\)

\(\Rightarrow\left(t+8\right)t=m\)

\(\Leftrightarrow t^2+8t=m\)

Xét hàm \(f\left(t\right)=t^2+8t\) trên \(\left[-4;0\right]\)

\(-\dfrac{b}{2a}=-4\) ; \(f\left(-4\right)=-16\) ; \(f\left(0\right)=0\)

\(\Rightarrow-16\le f\left(t\right)\le0\Rightarrow-16\le m\le0\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2021 lúc 19:45

\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)

Đặt \(x^2-2x-3=t\) (1)

(1) có 2 nghiệm x phân biệt khi \(\Delta'=1-\left(-3-t\right)>0\Rightarrow t>-4\)

Khi đó pt đã cho trở thành:

\(\left(t+8\right)t=m\)

\(\Leftrightarrow t^2+8t=m\) (2)

Do (2) là pt bậc 2 có tối đa 2 nghiệm nên pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm pb đều lớn hơn -4

Từ đồ thị \(f\left(t\right)=t^2+8t\) ta thấy ko tồn tại m thỏa mãn

Ngọc Bùi
Xem chi tiết
Thủ thuật Samsung smart...
5 tháng 5 2017 lúc 20:37

a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0

nên x + 1/2 = 0 hoặc x-3 = 0

vậy x = -1/2 và x = 3

Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3

b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0

Vậy x = 0 hoặc x = 1

Đa thức D(x) có 2 nghiệm là x1= 0 và x= 1

c, Thay E(x) = 0

nên x3 + 8 = 0 => x3 = -8 => x = -2

Vậy đa thức E(x) có 1 nghiệm là x = -2

d, Thay F(x) =  0 nên 2x - 5 + (x-17) = 0

=> 2x - 5 + x - 17 = 0

=> 3x -22 = 0

=> 3x = 22

x = 22/3

Vậy đa thức F(x) có 1 nghiệm là x = 22/3

e, Thay C(x) = 0 nên x- 9 = 0

x2 = 9 => x = 3 hoặc x = -3

Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3

f, Thay A(x) = 0 nên x2 - 4x = 0

=> x.(x - 4) = 0

=> x = 0 và x = 4

Vậy đa thức A(x) có 2 nghiệm là x1=0 và x= 4

g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0

Vậy 2x + 4 = 0 và 7-14x =0

=> x = -2 và x = 1/2

Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2

h, G(x) = 0 nên (3x-5) - (18-6x) = 0

=> 3x - 5 - 18 + 6x = 0

=> 9x - 23 = 0

=> 9x = 23

x = 23/9

Vậy đa thức này có 1 nghiệm là x = 23/9 

l҉o҉n҉g҉ d҉z҉
7 tháng 6 2020 lúc 19:38

a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)

B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)

             <=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)

Vậy nghiệm của B(x) là -1/2 và 3

b) D(x) = \(x^2-x\)

D(x) = 0 <=> \(x^2-x=0\)

              <=> \(x\left(x-1\right)=0\)

              <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy nghiệm của D(x) là 0 và 1

c) E(x) = \(x^3+8\)

E(x) = 0 <=> x3 + 8 = 0

             <=> x3 = -8

             <=> x3 = -23

             <=> x = 3

Vậy nghiệm của E(x) là 3

d) F(x) = 2x - 5 + ( x - 17 )

F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0

             <=> 2x + x + ( -5 - 17 ) = 0

             <=> 3x - 22 = 0

             <=> 3x = 22

             <=> x = 22/3

Vậy nghiệm của F(x) là 22/3

f) A(x) = x2 - 4x 

A(x) = 0 <=> x2 - 4x = 0 

             <=> x( x - 4 ) = 0

             <=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy nghiệm của A(x) là 0 và 4

g) H(x) = ( 2x + 4 )( 7 - 14x )

H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )

              <=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

Vậy nghiệm của H(x) là -2 và 1/2

h) G(x) = ( 3x - 5 ) - ( 18 - 6x )

G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0 

              <=> 3x - 5 - 18 + 6x = 0

              <=> 3x - 23 = 0

              <=> 3x = 23 

              <=> x = 23/3

Vậy nghiệm của G(x) là 23/3

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
7 tháng 6 2020 lúc 19:41

#Mingg nhầm đoạn cuối tí 

h) <=> 9x - 23 = 0

    <=> 9x = 23

     <=> x = 23/9

Vậy nghiệm của G(x) là 23/9

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
ngô việt anh
Xem chi tiết
Aug.21
7 tháng 4 2019 lúc 15:52

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

Aug.21
7 tháng 4 2019 lúc 15:53

ak bạn thêm kết kuận nha!

Nguyễn Việt Hoàng
7 tháng 4 2019 lúc 16:07

\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(h\left(x\right)=\left(2x^5+x^4+1x^2+x+1\right)-\left(2x^5+x^4-x^2+1\right)\)

\(h\left(x\right)=2x^5+x^4+x^2+x+1-2x^5-x^4+x^2-1\)

\(h\left(x\right)=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(x^2+x^2\right)+\left(1-1\right)+x\)

\(h\left(x\right)=0+0+2x^2+0+x\)

\(h\left(x\right)=2x^2+x\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 2 2021 lúc 17:48

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

Hồng Phúc
16 tháng 2 2021 lúc 18:16

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

Cỏ dại
Xem chi tiết