\(\left(x^2-2x+5\right)\left(x+1\right)\left(x-3\right)=m\)
\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)
Đặt \(x^2-2x-3=t\Rightarrow t\in\left[-4;0\right]\)
\(\Rightarrow\left(t+8\right)t=m\)
\(\Leftrightarrow t^2+8t=m\)
Xét hàm \(f\left(t\right)=t^2+8t\) trên \(\left[-4;0\right]\)
\(-\dfrac{b}{2a}=-4\) ; \(f\left(-4\right)=-16\) ; \(f\left(0\right)=0\)
\(\Rightarrow-16\le f\left(t\right)\le0\Rightarrow-16\le m\le0\)