Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Phương Anh
Xem chi tiết
Phạm Thùy Linh
19 tháng 11 2021 lúc 7:47
2×6²-48:2³
Khách vãng lai đã xóa
Nguyễn Phương Dung
Xem chi tiết
Võ Thái Hào
30 tháng 3 2018 lúc 20:16

ta thấy : 1/21>1/33;...1/30>1/33

Vậy 1/21+..+1/30>1/33+...+1/33(10 lần 1/33)

1/3=11/33

mà 1/33+..+1/33(10 lần 1/33) =10/33

Suy ra S>1/33+..+1/33(10 lần 1/33)>1/3

Vậy S>1/3

nhớ k nha bạn 

Võ Thái Hào
30 tháng 3 2018 lúc 20:18

viết lôn nha câu đầu la .. 1/30.>1/33

Nguyễn Phương Dung
6 tháng 4 2018 lúc 19:26

Thanks

I`m fine
Xem chi tiết
Thân Nguyễn Thanh Thảo
25 tháng 10 2022 lúc 21:08

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

Trần Minh Hạnh 6/5
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 21:24

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

Nguyễn Kiều Oanh
Xem chi tiết
Hoàng Phúc
6 tháng 7 2016 lúc 15:40

Dễ thấy tổng S có 21 số hạng ,ta ghép từng cặp với nhau,mỗi cặp có 3 số hạng:

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{18}+2^{19}+2^{20}\right)\)

\(=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+.....+2^{18}.\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right).\left(1+2^3+....+2^{18}\right)=7.\left(1+2^3+....+2^{18}\right)\) luôn chia hết cho 7 (đpcm)

lê anh kiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 21:05

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

Lê Quốc Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 19:35

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{99}\right)⋮3\)

le thi ngoc anh
Xem chi tiết
Yêu nè
7 tháng 1 2020 lúc 16:19

Bạn tham khảo câu này nè

 https://olm.vn/hoi-dap/detail/4209841471.html

Học tốt

Khách vãng lai đã xóa
quan nguyen hoang
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 10:59

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)