Phân tích đa thức thành nhân tử
4x^2 +81 , x^7 +x^2 +1
Phân tích đa thức thành nhân tử
4x(x+y)(x+y+z)(x+z)+y^2.z^2
Phân tích đa thức thành nhân tử
4x^2-4y^2
Phân tích đa thức thành nhân tử
4x^2+8xy+3x+6y
\(=4x\left(x+2y\right)+3\left(x+2y\right)=\left(x+2y\right)\left(4x+3\right)\)
\(4x^2+8xy+3x+6y\)
\(=4\left(x+2y\right)+3\left(x+2y\right)\)
\(=7\left(x+2y\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(4x^2+81\)
b) \(x^7+x^2+1\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
a)
\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)
Bạn xem lại đề bài nhé!
b)
\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)
Phân tích đa thức thành nhân tử
4x^3 + 12x + 9
Ta có: \(4x^2+12x+9\)
\(=4x^2+6x+6x+9\)
\(=2x\left(2x+3\right)+3\left(2x+3\right)\)
\(=\left(2x+3\right)^2\)
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
Phân tích đa thức thành nhân tử
a) 3xy - 6y
b) x(x+y)+2x+2y
c) y^2 -81
a)\(3xy-6y=3y\left(x-2\right)\)
b)\(x\left(x+y\right)+2x+2y=x\left(x+y\right)+\left(2x+2y\right)=x\left(x+y\right)+2\left(x+y\right)=\left(x+y\right)\left(x+2\right)\)
c)\(y^2-81=y^2-9^2=\left(y-9\right)\left(y+9\right)\)
a)`3xy-6y`
`=3y(x-2)`
b)`x(x+y)+2x+2y`
`=x(x+y)+2(x+y)`
`=(x+y)(x+2)`
c)`y^2 -81`
`=y^2-9^2`
`=(y-9)(y+9)`
X^2 - 4x - 81 + 16
Phân tích đa thức thành nhân tử
Giúp em với
\(\left(x-4\right)^2-9^2=\left(x-13\right)\left(x+5\right)\)
phân tích đa thức thành nhân tử 6x^3-x^2-486x+81
6x^3-x^2-486x+81
=x2(6x-1)-81.(6x-1)
=(x2-81)(6x-1)
=(x2-92)(6x-1)
=(x-9)(x+9)(6x-1)