Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Ái Mỹ
Xem chi tiết
Nguyễn Đức Trí
7 tháng 8 2023 lúc 23:34

1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)

Gọi O là giao điểm AC và BD

\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)

Xét Δ vuông OAB có :

\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)

\(\Rightarrow AB=10\left(cm\right)\)

2) Xét Δ vuông OAB có :

\(AB=2OA=10\left(cm\right)\)

⇒ Δ OAB là Δ nửa đều

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)

mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)

 

Nguyễn Hoàng Lan Anh
Xem chi tiết
Nguyễn Trung Thuc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 3 2018 lúc 12:02

Bài tập: Diện tích hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Gọi H là giao điểm của hai đường chéo AC,BD.

⇒ HA = HC = 5( cm )

Áp dụng định lí Py – to – go ta có:

Lươn Đậu Văn
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 1 2020 lúc 9:21

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

Khách vãng lai đã xóa
Minh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 19:35

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

Ngo Bảo
Xem chi tiết
Lê
25 tháng 2 2021 lúc 20:53

bạn tự vẽ hình nha ( mình nản vẽ hình lắm ) 

ta có AB = 6 cm 

lại có góc ABC = 60 độ 

suy ra : △ABC là △ đều  ( △cân có một góc bằng 60 độ ) 

suy ra AC bằng 6 cm suy ra AO = CO = 3 cm 

xét △ABO vuông tại O có :

theo định lý py-ta-go ta có AB2 = BO2+ AO2 

=> BO2 = 36 - 9 = 25 (cm)

=> BO = 5 cm 

=> BD = 10 cm 

vậy diện tích hình thoi là:

1/2.6.10 = 30cm2 ( điều cần tìm )

 

anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2021 lúc 21:37

Gọi giao điểm của AC và BD là H

Ta có: ABCD là hình thoi(gt)

nên Hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

mà AC cắt BD tại H(gt)

nên H là trung điểm của AC, H là trung điểm của BD và AH⊥BD tại H

Ta có: ABCD là hình thoi(gt)

nên AD=AB

Xét ΔADB có AB=AD(cmt)

nên ΔADB cân tại A(Định nghĩa tam giác cân)

Xét ΔADB cân tại A có \(\widehat{A}=60^0\)(gt)

nên ΔADB đều(Dấu hiệu nhận biết tam giác đều)

⇒BD=AB

mà AB=2dm(gt)

nên BD=2dm

mà \(DH=\dfrac{DB}{2}\)(H là trung điểm của DB)

nên \(DH=\dfrac{2}{2}=1dm\)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+DH^2=AD^2\)

\(\Leftrightarrow AH^2=AD^2-DH^2=2^2-1^2=3\)

hay \(AH=\sqrt{3}\)(dm)

mà \(AC=2\cdot AH\)(H là trung điểm của AC)

nên \(AC=2\sqrt{3}\)(dm)

Ta có: ABCD là hình thoi(gt)

nên \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot2\sqrt{3}\cdot2=2\sqrt{3}\left(dm^2\right)\)

Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
7 tháng 10 2019 lúc 18:01

A B C D I

Vì : ABCD là hình thoi 

\(\Rightarrow IA=IC=\frac{AC}{2}=\frac{12}{2}=6\)

Xét \(\Delta ABI\) vuông tại I

\(\Rightarrow AB^2=AI^2+BI^2\)

\(\Rightarrow BI^2=AB^2-AI^2=10^2-6^2=64\)

\(\Rightarrow BI=8\)

\(\Rightarrow BD=2.BI=2.8=16\)

Diện tích hình thoi ABCD là :

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.12.16=96\)

Chúc bạn học tốt !!!