Cho a.b.c=1. a,b,c>0.
CMR(a+1)(b+1)(c+1)\(\ge\)8
Cho a,b,c >0, a.b.c =1. CMr (a-1)(b-1)(c-1)>0
Cho a+b+c=a^2+b^2+c^2=2 và a.b.c khác 0. CMR: 1/a+1/b+1/c=1/(a.b.c)
Ta có:\(a^2+b^2+c^2=2\)
\(\Leftrightarrow\left(a+b+c\right)^2-2ab-2ac-2bc=2\)
Mà a+b+c=2
\(\Rightarrow4-2ab-2ac-2bc=2\)
\(\Rightarrow2-2ab-2ac-2bc=0\)
\(\Rightarrow-2\left(ab+ac+bc\right)=-2\)
\(\Rightarrow ab+ac+bc=1\left(1\right)\)
Ta lại có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+ac+bc}{abc}\)
Từ (1) suy ra đc:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)
theo bài ra ta có: a+b+c=2 => (a+b+c)^2 =4 => a^2 +b^2 +c^2 +2(ab+bc+ca)=4=> 2(ab+bc+ca)=2(vì a^2 +b^2 +c^2=2)
=> ab+bc+ca=1 =>\(\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=\frac{1}{abc}\) (vì abc khác 0)
=> \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=\frac{1}{abc}\)
Vậy với a+b+c=a^2+b^2+c^2=2 và abc khác 0 thì \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=\frac{1}{abc}\)
cho a.b.c=1
và a+b+c>1/a+1/b+1/c
cmr (a-1)(b-1)(c-1)>0
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = \(\overline{\frac{\overline{bc}+\overline{ac}+\overline{ac}}{\overline{abc}}}\) = ab + bc + ca
=> a + b + c = ab + bc + ca
=> a + b + c - ab - bc - ca = 0
=> a + b + c - ab - bc - ac + abc - 1 = 0
=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
=> - a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
=> (b - 1)(- a + 1 - c + ac) = 0
=> (b - 1)[( - a + 1) + (ac - c)] = 0
=> (b - 1)[ - (a - 1) + c(a - 1)] = 0
=> (a - 1)(b - 1)(c - 1) = 0
=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
=> a = 1 hoặc b = 1 hoặc c = 1
Vậy (a - 1)(b - 1)(c - 1) > 1
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(\Leftrightarrow abc-ac-bc+c-ab+a+b-1>0\)
\(\Leftrightarrow-ab-bc-ab+a+b+c>0\)
\(\Leftrightarrow a+b+c>ab+ac+bc\)
\(\Leftrightarrow a+b+c>\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (thỏa mãn đề bài)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Cho a; b; c khác 0 và a.b.c=1; a+b+c>(1/a)+(1/b)+(1/c) CMR: Trong 3 số a, b, c có đúng 1 số dương.
Dề sai thế \(a=\frac{1}{3};b=5;c=\frac{3}{5}\)vô đi nhé.
cho a, b, c > 0; abc = 1. CMR: (a + 1)(b + 1)(c + 1) \(\ge\) 8
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a, b, c > 0; abc = 1. CMR: (a + 1)(b + 1)(c + 1)\(\ge\)8
giả sử \(a+\frac{1}{a}\ge2\)
vì a > 0 => \(a^2+1\ge2a\)
<=> \(a^2+1-2a\ge0\)
<=> \(\left(a-1\right)^2\ge0\)( luôn đúng vs mọi a > 0)
=> \(a+\frac{1}{a}\ge2\). CMTT ta có \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)(1)
Ta có \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)
\(=1+1+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+a+b+c\)\(=2+\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\)
Từ (1) =>\(2+\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\ge8\)(đpcm)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)
\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)
\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)
\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)
Ta cần CM \(M\geq \frac{4}{3}\)
\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)
\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)
\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)
Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c=2$
Cho a,b,c là các số thực dương thỏa mac: 1≥c≥b≥a≥0.
CMR: 2/3≥a/(a+1)+b/(b+1)+c/(c+1 )
cho a,b,c>0 CMR:\(\frac{a^8+b^8+c^8}{\left(abc\right)^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)
Khi đó \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\).
Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)