\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho các số thực a, b, c thỏa a > 0, bc = a2 , a + b + c = abc. Chứng minh:
a \(\ge\sqrt{\frac{1+2\sqrt{3}}{3}}\)
BT1: Cho a,b,c>0. CMR: a2(b+c-a)+b2(c+a-b)+c2(a+b-c)=<3abc
BT2: Cho a,b,c>0. CMR\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
BT3: Cho a,b,c>0 thỏa mãn: abc=ab+bc+ca. Chứng minh:
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}=< \dfrac{3}{16}\)
GIÚP MÌNH VỚI. MÌNH ĐANG CẦN GẤP.
a)a3+b3≥ ab(a+b)(a,b>0)
b)a4+b4≥ a3b+ab3
c)(1+a)(1+b) ≥ (1+\(\sqrt{ab}\))2
d)\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\) ≥ ab +bc+ac(a,b>0)
CM : (a+ b)(1 /a + 1 /b) \(\ge\)4 với a, b, c \(\ge\)0
1) Chứng minh: 2 (a2 + b2) \(\ge\) (a + b)2.
2) Cho x > 0, y > 0. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
3) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh:
a2 + b2 + c2 < 2 (ab + bc + ca).
Cho a,b,c > 0 . CMR:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Chứng minh rằng
a)a2+b2+c2+d2+m2-a(b+c+d+m)\(\ge\)0 với mọi a,b,c,d,m
b)\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(x;y>0)
c)(ab+cd)2\(\le\)(a2+c2)(b2+d2)
d)a2+b2\(\ge\)a+b-\(\dfrac{1}{2}\)
cho a,b,c là các số dương thỏa mãn: a+b+c=1
cmr :\(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
Cho a, b,c là 3 cạnh của 1 tam giác.
CMR: a) \(\dfrac{a}{b+c+a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
b) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\) là độ dài 3 cạnh của 1 tam giác.