Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Hoang
Xem chi tiết
Vòng Vinh Van
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 9 2021 lúc 16:39

b.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x-\dfrac{1}{2}sin2x=-cosx\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(x+\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\pi+k2\pi\\2x+\dfrac{\pi}{6}=-x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{6}+k2\pi\\x=-\dfrac{7\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

c.

\(\Leftrightarrow2cos4x.sin3x=2sin4x.cos4x\)

\(\Leftrightarrow cos4x\left(sin4x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin4x=sin3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\4x=3x+k2\pi\\4x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=k2\pi\\x=\dfrac{\pi}{7}+\dfrac{k2\pi}{7}\end{matrix}\right.\)

Nguyễn Việt Lâm
12 tháng 9 2021 lúc 17:01

2.

\(f\left(x\right)=\dfrac{1}{2}-\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x-5\)

\(=-\dfrac{9}{2}-\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)\)

\(=-\dfrac{9}{2}-cos\left(2x-\dfrac{\pi}{3}\right)\)

Do \(-1\le-cos\left(2x-\dfrac{\pi}{3}\right)\le1\Rightarrow-\dfrac{11}{2}\le y\le-\dfrac{7}{2}\)

\(y_{min}=-\dfrac{11}{2}\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=1\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

\(y_{max}=-\dfrac{7}{2}\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=-1\Rightarrow x=\dfrac{2\pi}{3}+k\pi\)

Vòng Vinh Van
12 tháng 9 2021 lúc 16:38

Help

Nguyễn Lê Phước Thịnh
Xem chi tiết
Kim Taewon
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 23:25

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

an hạ
Xem chi tiết
Văn vở
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:43

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:47

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

Uyên
Xem chi tiết
Yeutoanhoc
8 tháng 6 2021 lúc 22:20

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

TrĐức
Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 12:20

a) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}\ne5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

Khi \(x=16\Rightarrow A=\dfrac{\sqrt[]{16}+2}{\sqrt[]{16}-5}=\dfrac{4+2}{4-5}=-6\)

b) \(B=\dfrac{3}{\sqrt[]{x}+5}+\dfrac{20-2\sqrt[]{x}}{x-25}\)

B có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{3\left(\sqrt[]{x}-5\right)+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{x}-15+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{\sqrt[]{x}+5}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{1}{\sqrt[]{x}-5}\left(dpcm\right)\)

c) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\in Z\left(x\in Z\right)\)

\(\Leftrightarrow\sqrt[]{x}+2⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\sqrt[]{x}+5⋮\sqrt[]{x}-5\)

\(\Leftrightarrow7⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{16;36;144\right\}\)

d) \(A>B\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}>\dfrac{1}{\sqrt[]{x}-5}\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\sqrt[]{x}+2>2\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}< -3\)

mà \(\sqrt[]{x}\ge0\)

\(\Leftrightarrow x\in\varnothing\)