Cho một phép tính:
S = 5 + 52 + 53 + … + 52020
Hãy chứng minh 45 + S là sô chính phương.
giúp mình câu này với:
Cho một phép tính:
S = 5 + 52 + 53 + … + 52020
Hãy chứng minh 45 + 5 là sô chính phương.
Sửa đề: 4S+5 là lũy thừa của 5
5S=5^2+5^3+...+5^2021
=>4S=5^2021-5
=>4S+5=5^2021 là lũy thừa của 5
2. Chứng minh rằng:
A = 5 + 52 + 53 + …+ 52021 không là số chính phương.
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
\(A=5+5^2+5^3+...+5^{2021}⋮5\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{2022}⋮25\) (vì đều chia hết \(5^2\))
\(\Rightarrow A⋮̸5^2=25\left(5⋮̸25\right)\)
Mà số chính phương chia hết cho 5 thì chia hết cho 25
Vậy A không phải là số chính phương
Cho biểu thức: M = 5 + 52 + 53 + … + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
chứng minh rằng tổng hai số chính phương lẻ ko là số chính phương
chứng minh rằng một số chính phương có chữ số tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ
1 số chính phương có chữ số hàng chục bằng 5 . tìm chữ sô hàng đơn vị
Cho B = 5 + 52 + 53 + … + 52021. Chứng tỏ B + 8 không thể là bình phương của một số tự nhiên.
Bài 3 (1điểm): Cho A = 5 + 52 + 53 + … + 5992 Chứng minh rằng: 4A + 5 là một luỹ thừa của 125.
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
M = 5 + 52 + 53 + ... + 580
CMR: M không phải là số chính phương
S = 5 + 52 + 53 + .....+ 596 . Chứng minh : S \(⋮\) 126 .
S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126