So sánh (19^2021+5^2021)^2022 và
(19^2022+5^2022)^2021
2021^20+2022^19 và 2022^20 So sánh( giải thích vì sao)
2021^20+2022^19 và 2022^20 So sánh( giải thích vì sao)
so sánh P=2019/2020+2020/2021+2021/2022 và Q=2019+2020+2021/2020+2021+2022
Q=1/5+2/5^2+3/5^3+...+2021/5^2021+2022/5^2022
So sánh Q với 5/36
\(\dfrac{2021}{2021^2+1}và\dfrac{2022}{2022^2+1}\)so sánh
Lời giải:
Ta thấy: $\frac{2021^2+1}{2021}=2021+\frac{1}{2021}< 2022< 2022+\frac{1}{2022}=\frac{2022^2+1}{2022}$
$\Rightarrow \frac{2021}{2021^2+1}> \frac{2022}{2022^2+1}$
So sánh A= \(\dfrac{10^{2023}+5}{10^{2022}+5}\) và B=\(\dfrac{10^{2022}+5}{10^{2021}+5}\)
\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)
\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)
10^2023+50>10^2022+50
=>-45/10^2023+50<-45/10^2020+50
=>1/10A<1/10B
=>A<B
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
so sánh 2023 mũ 2022 và 2022 mũ 2022 +2022 mũ 2021
Ta có:
\(2023^{2022}=2023\cdot2023^{2021}\)
\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)
Mà: \(2023>2022\)
\(\Rightarrow2023^{2021}>2022^{2021}\)
\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)
\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\)
Vậy: ...