Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Hiếu
Xem chi tiết
Thanh Thuy Tran
4 tháng 2 2017 lúc 8:42

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

Miki Thảo
Xem chi tiết
Nguyễn Trúc Vy
Xem chi tiết
Nguyễn Huy Tú
31 tháng 8 2021 lúc 19:48

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
31 tháng 8 2021 lúc 19:59

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

Khách vãng lai đã xóa
huynh van duong
Xem chi tiết
_Guiltykamikk_
12 tháng 6 2018 lúc 14:37

Đặt  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)

Mà  \(x^2+y^2+z^2=200\)

\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)

\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)

\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)

\(\Leftrightarrow kak^2.50=200\)

\(\Leftrightarrow kak^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)

+) Với  \(kak=2\)thì  \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)

+) Với  \(kak=-2\)thì  \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)

Vậy ...

_Guiltykamikk_
12 tháng 6 2018 lúc 14:31

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có :  \(xyz=-30\)

\(\Leftrightarrow2k\times3k\times5k=-30\)

\(\Leftrightarrow30k^3=-30\)

\(\Leftrightarrow k^3=-1\)

\(\Leftrightarrow k=-1\)

Thay vào ta được :

\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)

Vậy ...

Kiên-Messi-8A-Boy2k6
12 tháng 6 2018 lúc 14:36

\(b,\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}\)

\(=\frac{200}{50}=4\)

\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=4\)

Đến đây bn tính nốt nhé@_@

Baek Hyun
Xem chi tiết
sakura
Xem chi tiết
Akai Haruma
19 tháng 1 2017 lúc 21:57

Đặt \(\left ( \frac{1}{xy},\frac{1}{yz},\frac{1}{xz} \right )=(a,b,c)\)

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} b+c=\frac{1}{2}\\ c+a=\frac{5}{6}\\ a+b=\frac{2}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2b=\frac{2}{3}+\frac{1}{2}-\frac{5}{6}\\ 2c=\frac{1}{2}+\frac{5}{6}-\frac{2}{3}\\ 2a=\frac{5}{6}+\frac{2}{3}-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=\frac{1}{6}\\ c=\frac{1}{3}\\ a=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} yz=6\\ xz=3\\ xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=3\end{matrix}\right.\)

Lightning Farron
19 tháng 1 2017 lúc 20:10

\(\left\{\begin{matrix}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{matrix}\right.\).Cộng theo vế ta có:

\(\frac{x+y+y+z+x+z}{xyz}=\frac{1}{2}+\frac{5}{6}+\frac{2}{3}=2\)

\(\Leftrightarrow\frac{2\left(x+y+z\right)}{xyz}=2\Rightarrow2\left(x+y+z\right)=2xyz\)

\(\Leftrightarrow x+y+z=xyz\). Thay vào hệ đầu ta có:

\(\left\{\begin{matrix}\frac{x+y}{x+y+z}=\frac{1}{2}\\\frac{y+z}{x+y+z}=\frac{5}{6}\\\frac{x+z}{x+y+z}=\frac{2}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}2\left(x+y\right)=x+y+z\\6\left(y+z\right)=5\left(x+y+z\right)\\3\left(x+z\right)=2\left(x+y+z\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}2\left(x+y\right)=x+y+z\\\frac{6}{5}\left(y+z\right)=x+y+z\\\frac{3}{2}\left(x+z\right)=x+y+z\end{matrix}\right.\)

\(\Leftrightarrow2x+2y=\frac{6}{5}y+\frac{6}{5}z=\frac{3}{2}x+\frac{3}{2}z=x+y+z\)\(\Leftrightarrow\left\{\begin{matrix}y=2x\\z=3x\end{matrix}\right.\)

Lightning Farron
19 tháng 1 2017 lúc 20:11

giải tùm lum quá ra cái j ko bt

Nguyen Thi Thanh Thao
Xem chi tiết
Phương Anh (NTMH)
12 tháng 10 2016 lúc 5:09

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

Phương Anh (NTMH)
12 tháng 10 2016 lúc 5:03

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

Phương Anh (NTMH)
12 tháng 10 2016 lúc 5:14

g)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

→ x=2k ; y= 3k ; z= 5k

Ta có    xyz=810

=> 2k . 3k .5k = 810

           30.k3    = 810

                k3     = 810 : 30

               k3      = 27

         => k = 3

Với k=3 Suy ra

x = 2 . 3 = 6

y = 3 . 3 = 9

z = 3 . 5 = 15

Nguyễn Thùy Dương
Xem chi tiết
Akai Haruma
25 tháng 10 2017 lúc 21:34

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:

\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)

Bài toán tương đương với

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Áp dụng BĐT Am-Gm ta có:

\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)

Thực hiện tương tự và cộng theo vế, suy ra:

\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)

\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)

Nguyễn Thùy Dương
23 tháng 10 2017 lúc 21:30

@Ace Legona

KZ
23 tháng 10 2017 lúc 22:17

làm thế này chả biết có đúng ko nữa, sếp Ace có rảnh thì xem giúp em nhé ^^!

theo Bđt Cauchy, ta có:

\(x^3z+xy^3+yz^3\ge\sqrt[3]{x^4y^4z^4}=1\)

\(-x^2z-xy^2-yz^2\ge-\sqrt[3]{x^3y^3z^3}=-1\)

cộng theo vế 2 bất đẳng thức trên, ta được:

(cái này tớ muốn lách luật: không được trừ theo vế 2 bđt cùng chiều, chả biết có đc ko)

\(x^3z+xy^3+yz^3-x^2z-xy^2-yz^2\ge0\)

\(\Leftrightarrow x^2z\left(x-1\right)+xy^2\left(y-1\right)+yz^2\left(z-1\right)\ge0\)

\(\Leftrightarrow\dfrac{x\left(x-1\right)}{y}+\dfrac{y\left(y-1\right)}{z}+\dfrac{z\left(z-1\right)}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\dfrac{x}{y}-\dfrac{y}{x}-\dfrac{z}{x}\ge0\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{x}\) (đpcm)

Hoàng Phúc
Xem chi tiết
Minh Triều
10 tháng 8 2016 lúc 8:07

z3 ak ? hỏi thử

Hoàng Phúc
10 tháng 8 2016 lúc 8:11

z2 , nhầm chút

Hoàng Phúc
12 tháng 8 2016 lúc 22:15

à thôi, hình như trong sách của t có bài tương tự rồi ~~~