Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}=\frac{\left(\frac{x}{y}\right)^2}{\frac{1}{y}}+\frac{\left(\frac{y}{z}\right)^2}{\frac{1}{z}}+\frac{\left(\frac{z}{x}\right)^2}{\frac{1}{x}}\geq \frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
Giờ ta cần chỉ ra \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Thật vậy, do $xyz=1$ nên tồn tại các số dương \(a,b,c\) sao cho:
\((x,y,z)=\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)\)
Bài toán tương đương với
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)
Áp dụng BĐT Am-Gm ta có:
\((ab)^3+(ab)^3+(bc)^3\geq 3b^3ca^2\)
Thực hiện tương tự và cộng theo vế, suy ra:
\(3[(ab)^3+(bc)^3+(ca)^3]\geq 3(a^3bc^2+b^3ca^2+c^3ab^2)\)
\(\Leftrightarrow (ab)^3+(bc)^3+(ca)^3\geq a^3bc^2+b^3ca^2+c^3ab^2\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z=1\)
làm thế này chả biết có đúng ko nữa, sếp Ace có rảnh thì xem giúp em nhé ^^!
theo Bđt Cauchy, ta có:
\(x^3z+xy^3+yz^3\ge\sqrt[3]{x^4y^4z^4}=1\)
\(-x^2z-xy^2-yz^2\ge-\sqrt[3]{x^3y^3z^3}=-1\)
cộng theo vế 2 bất đẳng thức trên, ta được:
(cái này tớ muốn lách luật: không được trừ theo vế 2 bđt cùng chiều, chả biết có đc ko)
\(x^3z+xy^3+yz^3-x^2z-xy^2-yz^2\ge0\)
\(\Leftrightarrow x^2z\left(x-1\right)+xy^2\left(y-1\right)+yz^2\left(z-1\right)\ge0\)
\(\Leftrightarrow\dfrac{x\left(x-1\right)}{y}+\dfrac{y\left(y-1\right)}{z}+\dfrac{z\left(z-1\right)}{x}\ge0\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\dfrac{x}{y}-\dfrac{y}{x}-\dfrac{z}{x}\ge0\)
\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{x}\) (đpcm)