57.
C.8^4×16^5×32
D.27^4×81^10
58.so sánh
A.10^30 và 2^100
B.5^40.620^10
bài 2 viết mỗi tích, thương sau dưới dạng luỹ thừa
a) 4^10 x 2^30 b) 9^25 x 27^4 x 81^3 c) 25^50 x 125^5 d) 64^3 x 4^8 x 16^4
e)3^8:3^6 ; 2^10:8^3 ; 12^7 :6^7 ; 31^5 ; 81^3
f) 5^8 : 25^2 ; 4^9:64^2 ; 2^25 : 32^4 ; 125^3 : 25^4
a, 410. 230=220.230=250
b,925.274.813= 350.312.312=374
Tương tự các câu khác....
a, 410.230 = (22)10.230 = 220.230 = 250
b, 925.274.813 = (32)25.(33)4.(34)3 = 350.312.312 = 374
c, 2550.1255 = (52)50.(53)5 = 5100.515 = 5115
d, 643.48.164 = (26)3.(22)8.(24)4 = 218.216.216 = 250
e, 38 : 36 = 32
210 : 83 = 210 : (23)3 = 210 : 29 = 2
127 : 67 = (12 : 6)7 = 27
@Dương Tuyết Mai
84 x 165
274 x 8110
so sánh 830 va 320
\(8^4.16^5=\left(2^3\right)^4.\left(2^4\right)^5=2^{12}.2^{20}=2^{12+20}=2^{32}.\)
\(27^4.81^{10}=\left(3^3\right)^4.\left(3^4\right)^{10}=3^{12}.3^{40}=3^{52}.\)
*)ta thấy 8<3 và 30 < 20 => \(8^{30}< 3^{20}\)
84.165=(23)4.(24)5=212.220=212+20=232.
274.8110=(33)4.(34)10=312.340=352.
8<3 và 30 < 20 =>
AI mún nhờ giả violympic vòng 1 lớp 7 ; 6 ;5;4;3;2;1 thì nhắn tin nha (20 k một lần(
Hack facebook (10 nghìn 1 lên 500 )
Xóa nick facebook (20 nghìn 1 lần)
so sánh:
a) 81^125 và 27^130
b) 2^1050 và 5^450
c) 83^9 và 26^12
d) 63^15 và 34^18
d) 2^30+2^30+4^30 và 3.24^10
a: Ta có: \(81^{125}=3^{500}\)
\(27^{130}=3^{390}\)
mà 500>390
nên \(81^{125}>27^{130}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
bài 1 So sánh
a,3^20 và 27^4
b,5^34 vaf25.5^30
c,2^25 và 16^6
d,10^30 và 4^50
và
Ta có:
và
Ta có:
và
Ta có:
và
Ta có:
lưu ý 27 mà số 4 nhỏ ấy đấy là mũ nhé nhầm
Viết các tích sau dưới dạng lũy thừa
a) 8^4 . 16 ^ 5
b) 5^40 . 125^2 . 625 ^3
c) 27^4 . 81 ^ 10
d) 10^3 . 100^5 . 1000 ^4
a) \(8^4.16^5\)
\(=\left(2^3\right)^4.\left(2^4\right)^5\\ =2^{3.4}.2^{4.5}\\ =2^{12}.2^{20}\\ =2^{12+20}\\ =2^{32}\)
b) \(5^{40}.125^2.625^3\)
\(=5^{40}.\left(5^3\right)^2.\left(5^4\right)^3\)
\(=5^{40}.5^{3.2}.5^{4.3}\)
\(=5^{40}.5^6.5^{12}\)
\(=5^{40+6+12}\)
\(=5^{58}\)
c) \(27^4.81^{10}\)
\(=\left(3^3\right)^4.\left(3^4\right)^{10}\)
\(=3^{3.4}.3^{4.10}\)
\(=3^{12}.3^{40}\)
\(=3^{52}\)
d) \(10^3.100^5.1000^4\)
\(=10^3.\left(10^2\right)^5.\left(10^3\right)^4\)
\(=10^3.10^{2.5}.10^{3.4}\)
\(=10^3.10^{10}.10^{12}\)
\(=10^{3+10+12}\)
\(=10^{25}\)
So sánh
a,\(9^{27}\) và \(81^3\)
b,\(5^{14}\) và \(27^7\)
c, \(10^{30}\) và \(2^{100}\)
\(a,81^3=\left(9^2\right)^3=9^6\)
Vì \(9^{27}>9^6\) nên \(9^{27}>81^3\)
\(b,5^{14}=\left(5^2\right)^7=25^7\)
Vì \(25^7< 27^7\) nên \(5^{14}< 27^7\)
\(c,10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\) nên \(10^{30}< 2^{100}\)