Cho a,b >0. CM: (a+b)(\(\dfrac{1}{a}+\dfrac{1}{b})\ge4\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
CM: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a, b > 0.
...
Làm ơn ạ, lớp 8 chưa học bất đẳng thức Cô-si =(((
BĐT cần chứng minh tương đương:
\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng bất đẳng thức Cô-si ta có:
\((a+b)\ge 2\sqrt{ab}\)
\(\left(\dfrac1a+\dfrac1b\right)\ge 2\sqrt{\dfrac1{ab}}\)
\(\Rightarrow (a+b)\left(\dfrac1a+\dfrac1b\right) \ge 2\sqrt{ab}2\sqrt{\dfrac1{ab}}=4\) (đpcm)
Dấu \("="\) xảy ra khi \(a=b\)
Áp dụng BĐT với hai số dương ta có:
`a+b>=2sqrt{ab}`
`1/a+1/b>=2/sqrt{ab}`
`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`
Dấu "=" xảy ra khi `a=b>0`
Cho a,b>0.Chứng minh \(\dfrac{a^2+b^2}{2}\ge ab\)
Gíup mình với ạ, mình cảm ơn nhiều
mk thấy cm \(\dfrac{a^2+b^2}{2}\ge ab\) thì đúng hơn
Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)
Dấu "=" xảy ra khi a=b
Cho các số hữu tỉ với mẫu dương, trong đó \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). CMR:
a) ad < bc.
b) \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Gỉai giúp mình với cảm ơn các bạn nhiều!!!!!!!
Ai giải đúng cho 1 tick!
Lời giải:
a.
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$
$\Rightarrow \frac{ad-bc}{bd}< 0$
$\Rightarrow ad-bc<0$ (do $bd>0$)
$\Rightarrow ad< bc$ (đpcm)
b.
$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$
--------
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
Mọi người ơi, giúp mình nhanh bài này với ạ, mình đang cần gấp ạ. Cảm ơn mng nhiều!!
\(\left(\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\right):\left(1-\dfrac{2}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
A=\(\dfrac{2022^{2022}+1}{2022^{2023}+1}\) ; B= \(\dfrac{2022^{2023}+1}{2022^{2024}+1}\) So sánh A và B
SOS! Mình đang cần giúp nhanh ạ vì mai thi rồi cảm ơn nhiều
Thu gọn đa thức sau:
a) A= \(5xy - y^2 - 2xy +4xy + 3x -2y\)
b) B= \(\dfrac{1}{2}ab^2 - \dfrac{7}{8}ab^2 + \dfrac{3}{4}a^2 b - \dfrac{3}{8}a^2b - \dfrac{1}{2}ab^2\)
c) C= \(2a^2b - 8b^2 + 5a^2b + 5c^2 - 3b^2 + 4c^2\)
Giúp mình với ạ. Cảm ơn các bạn nhiều!!
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
\(A=5xy-y^2-2xy+4xy+3x-2y\)
\(A=-y^2+7xy+3x-2y\)
\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(C=7a^2b-11b^2+9c^2\)
\(A=7xy-y^2+3x-2y\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=7a^2b-11b^2+9c^2\)
1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
Cho a ∈ {7; 11; 13} và b ∈ {15; 0; 41; 32}. Giá trị lớn nhất của phân số \(\dfrac{a}{b}\) là:
A. \(\dfrac{1}{2}\)
B. \(\dfrac{7}{50}\)
C. \(\dfrac{3}{20}\)
D. \(\dfrac{21}{100}\)
CÁC BẠN GIẢI GIÚP MÌNH BÀI NÀY NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
Giúp mình với ạ, giải chi tiết nhé !
Mình xin cảm ơn !
a/ \(\sqrt{25}\) - 3\(\sqrt{\dfrac{4}{9}}\)
b/ (2 - \(\dfrac{5}{3}\)) : (\(\dfrac{2}{7}\) + \(\dfrac{5}{21}\) - 1)
c/ 12,7 - 17,2 + 199,9 - 22,8 - 149,9
d/ (\(\dfrac{-1}{2}\))4 + |\(\dfrac{-2}{3}\)| - 20070
e/ 4(\(\dfrac{-1}{2}\))3 + |\(\dfrac{1}{2}\)| : 5
g/ 3 - (\(\dfrac{-6}{7}\))0 + \(\sqrt{9}\) : 2
h/ \(\dfrac{27}{23}\) + \(\dfrac{5}{21}\) - \(\dfrac{4}{23}\) + \(\dfrac{6}{21}\) + \(\dfrac{1}{2}\)
a, \(\sqrt{25}-3\sqrt{\dfrac{4}{9}}=5-3.\dfrac{2}{3}=3\)
b, \(\left(2-\dfrac{5}{3}\right):\left(\dfrac{2}{7}+\dfrac{5}{21}-1\right)\)
\(=\dfrac{1}{3}:\dfrac{6+5-21}{21}\)
\(=-\dfrac{1}{3}.\dfrac{21}{10}\)
\(=-\dfrac{7}{10}\)