Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thao Nhi Nguyen
Xem chi tiết
James Pham
Xem chi tiết
Hồng Nhan
17 tháng 11 2023 lúc 4:51

loading...loading...loading...  

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
14 tháng 4 2017 lúc 16:59

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 13:35

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Nguyễn Huệ
Xem chi tiết
Nguyễn Huệ
8 tháng 3 2022 lúc 17:39

xét tính liên tục của hs 
ai giúp mình với 

 

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 17:43

Xét tính liên tục tại \(x=0\) hay xét trên toàn miền R em nhỉ?

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 21:40

\(sinx=0\Rightarrow x=k\pi\)

\(\Rightarrow\) Hàm liên tục tại mọi điểm thỏa mãn \(x\ne k\pi\)

Hàm gián đoạn tại mọi điểm \(\left\{{}\begin{matrix}x=k\pi\\k\ne0\end{matrix}\right.\)

Xét tại \(x=0\):

\(\lim\limits_{x\rightarrow0}\dfrac{1-\sqrt[3]{cosx}}{sin^2x}=\lim\limits_{x\rightarrow0}\dfrac{1-cosx}{sin^2x\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{2sin^2\dfrac{x}{2}}{4sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{1}{2cos^2\dfrac{x}{2}\left(1+\sqrt[3]{cosx}+\sqrt[3]{cos^2x}\right)}=\dfrac{1}{2.1.\left(1+1+1\right)}=\dfrac{1}{6}\ne f\left(0\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Cả 4 đáp án đều sai

Julian Edward
Xem chi tiết
Hoàng Tử Hà
19 tháng 2 2021 lúc 21:42

\(f\left(0\right)=2.0+m+1=m+1\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[3]{x+1}-1}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x+1-1}{x(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1)}=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)\(f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)\Leftrightarrow m+1=\dfrac{1}{3}\Rightarrow m=-\dfrac{2}{3}\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
28 tháng 4 2017 lúc 16:24

\(f\left(5\right)=-5^2+2.5=-15\)
\(f\left(-2\right)=-\left(-2\right)^2+2.\left(-2\right)=-8\)
\(f\left(2\right)=-2^2+2.2=0\)

Thái Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 23:38

a/ \(f'\left(x\right)=12sin^33x.cos3x\)

\(f'\left(x\right)=g\left(x\right)\Leftrightarrow12sin^33x.cos3x=sin6x\)

\(\Leftrightarrow6sin^23x.2sin3x.cos3x-sin6x=0\)

\(\Leftrightarrow6sin^23x.sin6x-sin6x=0\)

\(\Leftrightarrow sin6x\left(6sin^23x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin6x=0\\sin^23x=\frac{1}{6}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\\frac{1-cos6x}{2}=\frac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\\cos6x=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x=k\pi\\6x=a+k2\pi\\6x=-a+k2\pi\end{matrix}\right.\) với \(cosa=\frac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{6}\\x=\frac{a}{6}+\frac{k\pi}{3}\\x=-\frac{a}{6}+\frac{k\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 5 2020 lúc 23:42

b/

\(f'\left(x\right)=6sin^22x.cos2x=4cos2x-5sin4x\)

\(\Leftrightarrow6sin^22x.cos2x=4cos2x-10sin2x.cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\3sin^22x=2-5sin2x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3sin^22x+5sin2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{3}\\sin2x=-2< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin2x=sina\) (với \(sina=\frac{1}{3}\))

\(\Rightarrow\left[{}\begin{matrix}2x=a+k2\pi\\2x=\pi-a+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 5 2020 lúc 23:46

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Trương Tấn Sang
Xem chi tiết
Akai Haruma
25 tháng 10 2021 lúc 19:35

Lời giải:

Do $-3<-1$ nên:

$f(-3)=3(-3)^2-(-3)+1=31$

Do $0> -1$ nên:

$f(0)=\sqrt{0+1}-2=-1$

$\Rightarrow f(-3)+f(0)=31+(-1)=30$