tìm tọa độ GĐ của đường thang (d):y=2x-3 với parabol (p):y=x^2
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
a: Khi m=-2 thì y=-2x+1-(-2)=-2x+1+2=-2x+3
PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
b: PTHĐGĐ là:
x^2+2x+m-1=0
\(\Delta=2^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm thì -4m+8>=0
=>m<=2
x1^2+x2^2=x1*x2+8
=>(x1+x2)^2-2x1x2-x1x2=8
=>(-2)^2-3(m-1)=8
=>4-3m+3=8
=>7-3m=8
=>3m=-1
=>m=-1/3
Trong nửa mặt phẳng tọa độ Oxy cho đường thẳng (d): \(y=2x+m^2+m-3\) và parabol (P): y=\(x^2\). Tìm GT nguyên dương của m để (d) tiếp xúc với (P) và khi đó hãy tìm tọa độ tiếp điểm của (d) và (P)
Phương trình hoành độ giao điểm là:
\(x^2-2x-m^2-m+3=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)
\(=4+4m^2+4m-12=4m^2+4m-8\)
\(=4\left(m+2\right)\left(m-1\right)\)
Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0
=>m=-2(loại) hoặc m=1(nhận)
c2
a/ trong mp tọa độ Oxy,vẽ parabol (P): \(y=-\dfrac{1}{2}x^2\)và tìm tọa độ giao điểm của (P) và đường thẳng (d): \(y=4x-16\)
b/ tìm điều kiện của m để đường thẳng (d): \(y=\left(m-1\right)x+m+3\)song song vs đường thẳng \(y=-2x+1\)
b: Phương trình hoành độ giao điểm là:
\(\dfrac{-1}{2}x^2-4x+16=0\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)
\(\Leftrightarrow x^2+8x-32=0\)
\(\Leftrightarrow\left(x+4\right)^2=48\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)
Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)
Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)
b: Để hai đường song song thì
\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)
Cho parabol (P):y=x2 và đường thẳng (d):y=2x+m
a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ với m=3. Tìm tọa độ giao điểm của (d) và (P) (bằng lập luận và bằng đồ thị)
b) Tìm m để (d) tiếp xúc với (P). Xác định tọa độ tiếp điểm
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
Cho parabol (P): y = \(x^2\) và đường thẳng (d): y = 2x + m
1. Vẽ (P).
2. Tìm m để (P) tiếp xúc (d).
3.Tìm tọa độ tiếp điểm.
1. Ta có đồ thị :
2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)
Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)
- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow m=-1\)
3. Có phương trình hoành độ giao điểm :
\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)
\(\Rightarrow x=1\)
\(\Rightarrow y=1\)
Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)
Trong mặt phẳng tọa độ Oxy,cho Parabol (P):y=x^2 và đường thẳng (d): y=2x-m+1 (m là tham số)
a) Tìm tọa độ giao điểm của (d) và (P) khi m=2
b) Tìm M để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có tung độ là y1,y2 thỏa mãn
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
Cho 2 hàm số y=x² ; y= -2x+3 có đồ thị lần lượt là Parabol (P) và đường thẳng (D) a) Vẽ (P) và (D) trên cùng mặt phẳng tọa độ b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán
a)
\(\left(P\right):y=x^2\)
Ta có bảng
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 1 | 0 | 1 | 4 |
Vậy đồ thị hàm số \(y=x^2\) là một parabol lần lượt đi qua các điểm
\(\left(-2;4\right),\left(-1;1\right),\left(0;0\right),\left(1;1\right),\left(2;4\right)\)
Bạn tự vẽ nhé
\(\left(d\right):y=-2x+3\)
Cho \(y=0\Rightarrow x=\dfrac{3}{2}\Rightarrow A\left(\dfrac{3}{2};0\right)\in Ox\)
Cho \(x=0\Rightarrow y=3\Rightarrow B\left(0;3\right)\in Oy\)
Vẽ đường thẳng AB ta được đths \(y=-2x+3\)
Bạn tự bổ sung vào hình vẽ nhé
b) Xét PTHĐGĐ của \(\left(P\right),\left(d\right)\) là nghiệm của phương trình
\(x^2=-2x+3\\ \Leftrightarrow x^2+2x-3=0\)
Xét \(a+b+c=1+2-3=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với `x=1 => y=x^2 = 1`
Với `x=2 => y=x^2 = 4`
Vậy tọa độ giao điểm của \(\left(P\right),\left(d\right)\) là 2 điểm \(\left(1;1\right)\) và \(\left(2;4\right)\)
Trong mặt phẳng tọa độ oxy cho parabol p y = x bình và đường thẳng d có dạng y = mx + m+1 a) với m =1 Tìm tọa độ giao điểm của đường thẳng d với hai trục tọa độ b) tính giá trị của m để đường thẳng d cắt parabol p tại 2 điểm phân biệt nằm về bên trái của đường thẳng x = 2
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
a: Khi m=-5 thì y=2(-5+1)x-(-5)+4
=>y=-8x+9
PTHĐGĐ là:
x^2+8x-9=0
=>(x+9)(x-1)=0
=>x=1 hoặc x=-9
=>y=1 hoặc y=81
b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)
\(=\sqrt{4m^2+8m+4-4m+16}\)
\(=\sqrt{4m^2+4m+20}\)
\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)
Dấu = xảy ra khi m=-1/2