cho a,b thuộc Z và b khác 0
chứng minh rằng \(\frac{a}{-b}=\frac{-a}{b}va\frac{-a}{-b}=\frac{a}{b}\)
Cho a,b,c và x,y,z là các số khác nhau và khác không. Chứng minh rằng nếu :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) và \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)
\(\left(\frac{x}{a}+\frac{y}{b}\right)^2+2\left(\frac{x}{a}+\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\left(\frac{x}{a}\right)^2+2\frac{x}{a}\frac{y}{b}+\left(\frac{y}{b}\right)^2+\left(2\frac{x}{a}+2\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)
\(\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{2yz}{bc}+\frac{z^2}{c^2}=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{c}{z}+\frac{b}{y}+\frac{a}{x}\right)=1\)
\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(ĐPCM\right)\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)
\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)
Cho x,y,a,b thỏa mãn
\(\frac{x^2+y^2}{a^2+b^2}\)= \(\frac{x^2}{a^2}\)+\(\frac{y^2}{b^2}\),a,b\(\ne\)0
Chứng minh x=y=0
\(\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\)
\(\Leftrightarrow\dfrac{x^2+y^2}{a^2+b^2}=\dfrac{x^2b^2+a^2y^2}{a^2b^2}\)
\(\Leftrightarrow\left(x^2+y^2\right)a^2b^2=\left(a^2+b^2\right)\left(x^2b^2+a^2y^2\right)\)
\(\Leftrightarrow a^2b^2x^2+a^2b^2y^2=a^2x^2b^2+a^4y^2+b^4x^2+a^2y^2b^2\)
\(\Leftrightarrow0=a^4y^2+b^4x^2\)
Có \(\left\{{}\begin{matrix}a^4y^2\ge0\\b^4x^2\ge0\end{matrix}\right.\) =>\(a^4y^2+b^4x^2\ge0\)
[=] xảy ra <=> \(\left\{{}\begin{matrix}a^4y^2=0\\b^4x^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) (vì a;b khác 0)
Vậy y=x=0 (đpcm)
Cho \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) . Chứng minh rằng \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\) (với a;b;c khác 0 và các mẫu đều khác 0 )
Bạn xem lời giải Tại đây nhé !
a) Tìm 3 số x, y, z biết rằng 2x-y=20 và \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\).
b) Cho a,b,c là các số nguyên khác 0 và \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Chứng minh a=b=c.
a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
Từ \(\frac{x}{3}=10=>x=30\)
Từ \(\frac{y}{4}=10=>y=40\)
Từ \(\frac{z}{5}=10=>z=50\)
Vậy x=30,y=40,z=50
b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)
Đpcm
a)Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{4}\)= \(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20
-> \(\frac{x}{3}\)= 20 ->x=20*3=60
\(\frac{y}{4}\)=20->y=20*4=80
\(\frac{z}{5}\)=20->z=20*5=100
Vậy x=60, y=80, z=100.
a) Ta có : \(\frac{x}{3}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}2x=10\cdot6=60\Rightarrow x=30\\y=10\cdot4=40\\z=10\cdot5=50\end{cases}}\)
Vậy....
=))
Cho x,y,z,a,b,c khác 0 và \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\).Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
Cho a . ( y + z ) = b . ( z + x ) = c . ( x + y )
Trong đó a,b,c đôi 1 khác nhau và khác 0
Chứng minh rằng : \(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Cho a . ( y + z ) = b . ( z + x ) = c . (x + y )
Trong đó a,b,c đôi 1 khác nhau và khác 0
Chứng minh rằng :
\(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
BÀI 1:Cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn b2=ac.
Chứng minh rằng: \(\frac{a}{c}\)= \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
BÀI 2: Chứng minh rằng :
\(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)
Bài 1:
Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)
Vậy...
Bài 2:
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)
\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)
\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)
Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn