Cho \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) . Chứng minh rằng \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\) (với a;b;c khác 0 và các mẫu đều khác 0 )
a) Tìm 3 số x, y, z biết rằng 2x-y=20 và \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\).
b) Cho a,b,c là các số nguyên khác 0 và \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Chứng minh a=b=c.
Cho x,y,z,a,b,c khác 0 và \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\).Chứng minh rằng \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
Cho a . ( y + z ) = b . ( z + x ) = c . ( x + y )
Trong đó a,b,c đôi 1 khác nhau và khác 0
Chứng minh rằng : \(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Cho a . ( y + z ) = b . ( z + x ) = c . (x + y )
Trong đó a,b,c đôi 1 khác nhau và khác 0
Chứng minh rằng :
\(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
BÀI 1:Cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn b2=ac.
Chứng minh rằng: \(\frac{a}{c}\)= \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
BÀI 2: Chứng minh rằng :
\(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)
cho \(\frac{yc-bz}{a}=\frac{za-xc}{b}=\frac{xb-ya}{c}\) và a,b,c là các số khác 0. chứng minh rằng:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Chứng minh rằng : Nếu a(y+z)=b(z+x)=c(x+y)
Trong 3 số a;b;c là các số khác nhau và khác 0 thì:\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)