Giải phương trình nghiệm nguyên: x^2-(y+4)x+2y=0
Giải phương trình nghiệm nguyên \(y^4+2y^3-y^2-2y-x^2-x=0\)
\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)
\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)
\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)
Pt ước số
giải phương trình nghiệm nguyên:
x(y^2+1)+2y(x-2)=0
Giải phương trình nghiệm nguyên: \(x^2y-5x^2-xy-x+y-1=0\)
Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải phương trình nghiệm nguyên \(x^2+y^2+2x+2y=x^2y^2-1\)
\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)
\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)
\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)
\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)
Phương trình ước số cơ bản
Giải phương trình nghiệm nguyên x2− 2y2 − xy + 2x − y − 2 = 0.
\(x^2-2y^2-xy+2x-y-2=0\)
\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)
Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).
Ta có bảng giá trị:
x+y+1 | -3 | -1 | 1 | 3 |
x-2y+1 | -1 | -3 | 3 | 1 |
x | -10/3 (l) | -8/3 (l) | 2/3 (l) | 4/3 (l) |
y |
Vậy phương trình đã cho không có nghiệm nguyên.
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số