Giải phương trình và hệ phương trình
Cho hệ phương trình: { 2mx + y = 2 (m mà than số)
{ 8x + my = m + 2
a) Giải hệ phương trình khi m = -1
b) Tìm m để hệ phương trình có nghiệm là x = 2; y = 6
c) Giải và biện luận hệ phương trình theo m
d) Trong trường hợp có nghiệm duy nhất:
+ Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc m
+ Tìm m để 4x + 3y = 7
+ Tìm m để x - y > 0
+ Tìm m để P = y^2 - 2x đạt giá trị nhỏ nhất
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Giải phương trình và hệ phương trình sau
\(b,ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow3x+1=4x^2-16x+16\\ \Leftrightarrow4x^2-19x+15=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ d,\Leftrightarrow\left\{{}\begin{matrix}x=5-3y\left(1\right)\\\left(5-3y\right)^2+2y^2=25\left(2\right)\end{matrix}\right.\\ \left(2\right)\Leftrightarrow11y^2-30y=0\\ \Leftrightarrow y\left(11y-30\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow x=5-3\cdot0=5\\y=\dfrac{30}{11}\Rightarrow y=5-3\cdot\dfrac{30}{11}=-\dfrac{35}{11}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(5;0\right);\left(-\dfrac{35}{11};\dfrac{30}{11}\right)\right\}\)
Giải các phương trình và hệ phương trình:
a)
`x^2+3x+2=0`
`<=>x^2+2x+x+2=0`
`<=>x(x+2)+(x+2)=0`
`<=>(x+2)(x+1)=0`
`<=>x+2=0` hoặc `x+1=0`
`<=>x=-2` hoặc `x=-1`
b)
\(\left\{{}\begin{matrix}x-3y=5\\3x+2y=4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}3x-9y=15\\3x+2y=4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}-11y=11\\x-3y=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}y=-1\\x-3\cdot\left(-1\right)=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Cho hệ phương trình :
mx+4y=9 và x+my=8
a, Giải hệ phương trình với m=1.
b, Tìm m để hệ phương trình có nghiệm (1;3)
c, Tìm m để hệ phương trình có nghiệm duy nhất . Tìm nghiệm đó
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm (1;3) thì
Thay x=1 và y=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)
Thay m=1 vào hpt trên ta có:
1.x+4y=9 và x+1y=8
<=> x+4y=9 và x+y=8
<=> x+4y=9 và 4x+4y=32
<=> -3x = -23 và x+y=8
<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)
b) Để hệ phương trình có nghiệm (1;3)
=> x = 1; y = 3
Thay x = 1; y = 3 vào hpt trên ta có:
m1+43=9 và 1+m3=8
<=> m+12 = 9 và 1 + 3m = 8
<=> m = -3 và m = \(\dfrac{7}{3}\)
Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)
c) mx+4y=9 và x+my=8
SD phương pháp thế
Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9
<=> 8m - y(m2 -4) = 9
Để hệ phương trình có nghiệm duy nhất => m2 -4 \(\ne\) 0
<=> m2 \(\ne\) 4
<=> m \(\ne\) 2 và m \(\ne\) -2
Giải các bất phương trình và hệ phương trình sau
Gợi ý : Tìm đ/k của x trong căn thức
Xét 2 TH : x + 1 > 0 \(;x+1\le0\)
Bài 1: Giải phương trình và hệ phương trình sau:
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
Cô làm câu b thôi nhé :)
Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)
Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)
Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.
Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)
Từ đó : \(x=\frac{8-m}{2+m}\)
Kết luận:
+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
+ m = - 2, hệ phương trình vô nghiệm.
+ \(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)
Chúc em học tập tốt :)
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui