Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Vân
Xem chi tiết
Xem chi tiết
Phùng Minh Quân
18 tháng 4 2019 lúc 15:55

\(\frac{x^3}{x^2+y^2}=\frac{x^3+xy^2-xy^2}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự, ta có : \(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\)\(;\)\(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\)

Cộng vế theo vế 3 bđt trên ta được : 

\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)=3-\frac{3}{2}=\frac{3}{2}\) ( đpcm ) 

Người Vô Danh
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2022 lúc 22:02

\(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Hồ Lê Thiên Đức
Xem chi tiết
Đào Tùng Dương
17 tháng 2 2022 lúc 23:45

undefined

Nguyễn Phan Văn Trường
Xem chi tiết
Nguyễn Phan Văn Trường
24 tháng 12 2020 lúc 21:27

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

Nguyễn Việt Lâm
25 tháng 12 2020 lúc 8:57

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm

Linh Phương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 19:33

Bài 1: 

b) \(\left(2x^2-3y\right)^3\)

\(=8x^6-3\cdot4x^4\cdot3y+3\cdot2x^2\cdot9y^2-27y^3\)

\(=8x^6-36x^4y+54x^2y^2-27y^3\)

Trên con đường thành côn...
5 tháng 8 2021 lúc 19:36

Bạn nên đánh lại đề bài a nhé.

undefined

dũng nguyễn đăng
Xem chi tiết
Trên con đường thành côn...
5 tháng 9 2021 lúc 9:58

undefined

Anh
Xem chi tiết
Best zanis
Xem chi tiết
Nguyen Huu Minh Thanh
Xem chi tiết
văn dũng
2 tháng 4 2020 lúc 17:09

đây lớp 6 mà

math class 6

chúc bạn học tốt

Khách vãng lai đã xóa
Hn . never die !
2 tháng 4 2020 lúc 19:41

đây là lớp 6 chứ đâu phải là lớp 5
 

Khách vãng lai đã xóa
Nguyen Huu Minh Thanh
3 tháng 4 2020 lúc 8:44

danh nham 8 thanh 5

Khách vãng lai đã xóa