Giải và biện luận bất phương trình
a) (m-1).x + m +2 > 2x + 4
b) m.(m-2).x < m - (x +1)
Câu 1: Giải và biện luận các bất phương trình sau.
a. (x - 1)m < x + 2
b. 2x + \(m^2\) \(\ge\) m(x + 2)
c. 2x + 5m > mx - 2
d. (\(m^2\) + 2)x - 1 > 2x - m
e. \(m^2\)x - 2m \(\le\) -x - 3
f. \(m^2\)x + 2m < x + 1
Câu 2:
1. Tìm m để bất phương trình sau vô nghiệm; nghiệm đúng với mọi x thuộc R.
a. \(m^2\)x + 4m - 3 < x + \(m^2\)
b. \(m^2\)x - 3m \(\ge\) 4x + 2
2. Tìm m để 2 bất phương trình sau tương đương.
a. (m - 1)x - m + 3 > 0 và (m + 1)x - m + 2 > 0
b. (m - 1)x - m > 0 và (m + 1)x - m + 1 > 0
c. (m + 1)x - m - 3 > 0 và (m - 1)x - m - 2 > 0
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Giải và biện luận bất phương trình sau m(2-x)+(m-1)^2 >2x+5
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
giải và biện luận các bất phương trình : a) mx + 4 > 2x + m2 ; b) 2mx + 1 >= x + 4m2 ; c) x(m2 - 1) < m2 - 1 ; d) 2(m + 1)x <= (m + 1)2 (x - 1)
Giải và biện luận bất phương trình:
a) m(2x -m) \(\ge\) 2(x-m)+1
b) m(2-x) + (m-1)2 > 2x +5
a)m(2x-m)\(\ge\)2(x-m)+1
<=>2mx-m2-2x+2m-1\(\ge\)0
<=>2(m-1)x-m2+2m-1\(\ge\)0
*)m=1 BPT trở thành
0.x-1+2-1\(\ge\)0
<=>0\(\ge\)0(đúng)
*)m khác 1
=>2(m-1)x-(m-1)2\(\ge\)0
<=>2(m-1)x\(\ge\)(m-1)2
<=>x\(\ge\)\(\dfrac{m-1}{2}\)
Vậy m =1 thì BPT nghiệm đúng với mọi x
m khác 1 thì x\(\ge\)\(\dfrac{m-1}{2}\)
b)m(2-x)+(m-1)2>2x+5
<=>2m-mx+m2-2m+1-2x-5>0
<=>-(m+2)x+m2-4>0
<=>-(m+2)x>-(m-2)(m+2)
<=>(m+2)x<(m-2)(m+2)
*)Nếu m=-2 BPT trở thành
0.x<0
<=>0<0(vô lí)
*)Nếu m khác -2
BPT tương đương x<m-2
Vậy m=-2 BPT vô nghiệm
m khác -2 thì x<m-2
giải và biện luận các phương trình sau: a) (2x+m-4)(2mx-x+m) =0 ; b) (m+1)x +m-2/x+3 =m
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.
Bài 1: Giải các bất phương trình:
3(1 - x)> \(\dfrac{7-3x^2}{x+1}\)
Bài 2. Giải và biện luận bất phương trình
( m2 - 4 ) x +3 > ( 2m -1) x +m
giải và biện luận bất phương trình : 2(m + 1)x <= (m + 1)2(x - 1)
giải và biện luận bất phương trình : 2(m+1)x <= (m+1)2(x-1)
2(m+1)x<= (m+1)^2(x-1)
<=>(1-m^2)x <= -(m+1)^2
m=1 => 0<= - 4 =>vô nghiệm
m=-1 => 0<= 0 =>luôn thỏa với mọi x thuộc |R
-1<m<1 => x <= (m+1)/(1-m)
m<-1 hoặc m >1 => x >= (m+1)/(1-m)