2(m+1)x<= (m+1)^2(x-1)
<=>(1-m^2)x <= -(m+1)^2
m=1 => 0<= - 4 =>vô nghiệm
m=-1 => 0<= 0 =>luôn thỏa với mọi x thuộc |R
-1<m<1 => x <= (m+1)/(1-m)
m<-1 hoặc m >1 => x >= (m+1)/(1-m)
2(m+1)x<= (m+1)^2(x-1)
<=>(1-m^2)x <= -(m+1)^2
m=1 => 0<= - 4 =>vô nghiệm
m=-1 => 0<= 0 =>luôn thỏa với mọi x thuộc |R
-1<m<1 => x <= (m+1)/(1-m)
m<-1 hoặc m >1 => x >= (m+1)/(1-m)
giải và biện luận bất phương trình : 2(m + 1)x <= (m + 1)2(x - 1)
giải và biện luận bất phương trình : 2(m+1)x <= (m+1)2(x-1)
giải và biện luận bất phương trình : 2(m + 1)x <= (m + 1)2(x - 1)
giải và biện luận bất phương trình : 2(m + 1)x <= (m + 1)2(x - 1)
giải và biện luận bất phương trình : 2(m+1)x <= (m+1)2(x-1)
Câu 1: Giải và biện luận các bất phương trình sau.
a. (x - 1)m < x + 2
b. 2x + \(m^2\) \(\ge\) m(x + 2)
c. 2x + 5m > mx - 2
d. (\(m^2\) + 2)x - 1 > 2x - m
e. \(m^2\)x - 2m \(\le\) -x - 3
f. \(m^2\)x + 2m < x + 1
Câu 2:
1. Tìm m để bất phương trình sau vô nghiệm; nghiệm đúng với mọi x thuộc R.
a. \(m^2\)x + 4m - 3 < x + \(m^2\)
b. \(m^2\)x - 3m \(\ge\) 4x + 2
2. Tìm m để 2 bất phương trình sau tương đương.
a. (m - 1)x - m + 3 > 0 và (m + 1)x - m + 2 > 0
b. (m - 1)x - m > 0 và (m + 1)x - m + 1 > 0
c. (m + 1)x - m - 3 > 0 và (m - 1)x - m - 2 > 0
Giải và biện luận bất phương trình sau
\(\dfrac{mx-m+1}{x-1}< 0\)
Giải và biện luận bất phương trình sau
\(\left(m-1\right)x^2-2mx+3m-2>0\)
Giải và biện luận bất phương trình sau
\(mx^2+\left(m+1\right)x-2m\le0\)