Y x 3/5 + y x 2/7 = 31/70
Tìm y
\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\7\left(x^5+y^5\right)=31\left(x^3+y^3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=3\\21\left(x^5+y^5\right)=31.3\left(x^3+y^3\right)\end{matrix}\right.\)
\(\Rightarrow31\left(x^2+xy+y^2\right)\left(x^3+y^3\right)=21\left(x^5+y^5\right)\)
\(\Rightarrow10x^5+31x^4y+31x^3y^2+31x^2y^3+31xy^4+10y^5=0\)
\(\Rightarrow\left(x+y\right)\left(x+2y\right)\left(2x+y\right)\left(5x^2-2xy+5y^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-\dfrac{1}{2}x\\y=-2x\\y=x=0\end{matrix}\right.\) \(\Rightarrow...\)
1\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x^3y^3+7\left(x+1\right)\left(y+1\right)=31\end{matrix}\right.\)
2 giải pt \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)
2.
ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)
\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)
\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)
\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)
\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)
\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
Bài 1 tìm x
l) (x + 9) . (x2 – 25) = 0
e) |x - 4 |< 7
f) 40 < 31 + |x |< 47
g) | x + 3| ≤ 2
m) (-5x + 20).(x3 – 8) = 0
a) (x + 1).(y - 2) = 5
b) (x - 5).(y + 4) = -7
c) (x + 1)2 + (y – 1)2 = 0
d) (2x – 18)2 + ( y + 37)2 = 0
k |x-40|+|x-y+10|_<0
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
Bài 1:
l) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
e) Ta có: |x-4|<7
mà \(\left|x-4\right|\ge0\forall x\)
nên \(\left|x-4\right|\in\left\{0;1;2;3;4;5;6\right\}\)
\(\Leftrightarrow x-4\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
hay \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
Vậy: \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
f) Ta có: \(40< 31+\left|x\right|< 47\)
\(\Leftrightarrow\left|x\right|+31\in\left\{41;42;43;44;45;46\right\}\)
\(\Leftrightarrow\left|x\right|\in\left\{10;11;12;13;14;15\right\}\)
hay \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
Vậy: \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
g) Ta có: \(\left|x+3\right|\le2\)
\(\Leftrightarrow\left|x+3\right|\in\left\{0;1;2\right\}\)
\(\Leftrightarrow x+3\in\left\{0;1;-1;2;-2\right\}\)
hay \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
Vậy: \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
cho x và y thoả mãn x+y=7 và x^2+y^2 = 31. tìm giá trị biểu thức x^3 + y^3
a) Gọi 3 số cần tìm lần lượt là x;y;z. Ta có:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{310}{10}=31\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=31\\\frac{y}{3}=31\\\frac{z}{5}=31\end{cases}}\)
\(\hept{\begin{cases}x=62\\y=93\\z=155\end{cases}}\)
Bài 1: Tìm x,y
a, -3.x -30 = -60
b, x.y = 7
c, ( x-1 ). ( y+2 ) = -5
d, 2.x -3 = 5.x -7
e, ( -2 )2 - 8.x = 20
f, 17- ( -31 ) + 3.x = 2x - ( -50 )
g, 2. y2 - 16 = 34
a/ -3x=-60+30
=> -3x=-30
=> x=(-30):(-3)
=> x=10
Ban oi phai x,y∈Z thi moi lam dc
b/x.y=7
Vi x,y∈U(7)=(1,-1,7,-7)
Với x=1 => y=7 y=1=>x=7
x=-1 =>x=-7 y=-1=>x=-7
x=7 => x=1 y=7=>x=7
x=-7 => x=-1 y=-7=>x=-1
c/(x-1)(y+2)=-7
x-1 va y+2∈U(-7)=(1,-1,7,-7)
Bạn giải giống câu b/ nhưng x,y trái đâu nhé
d/2x-3=5x-7
=>(-3)+7=5x-2x
=>4=3x
=>x=4/3
e/(-2)2-8x=20
=>4-8x=20
=>4-20=8x
=>-16=8x
=>x=-2
f/17-(-31)+3x=2x-(-50)
=>17+31+3x=2x+50
=>49+3x=2x+50
=> 3x-2x=50-49
=> x=1
g/2y2-16=34
=>2y2=34+16
=>2y2=50
=>y2=50:2
=>y2=25=52=(-5)2
=>y=5 va y=-5
a) \(\left(-3\right)x-30=-60\)
\(\Leftrightarrow\left(-3\right)x=-60+30\)
\(\Leftrightarrow\left(-3\right)x=-30\)
\(\Leftrightarrow x=\left(-30\right):\left(-3\right)\)
\(\Leftrightarrow x=10\)
b) \(xy=7\)
\(\Rightarrow xy=1.7=7.1=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(y\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
KL: Các cặp số (x; y)...
c) \(\left(x-1\right)\left(y+2\right)=-5\)
\(\Rightarrow\left(x-1\right)\left(y+2\right)=1.\left(-5\right)=\left(-5\right).1=\left(-1\right).5=5.\left(-1\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-5\) | \(5\) | \(-1\) |
\(y+2\) | \(-5\) | \(1\) | \(-1\) | \(5\) |
\(x\) | \(2\) | \(-4\) | \(6\) | \(0\) |
\(y\) | \(-7\) | \(-1\) | \(-3\) | \(3\) |
KL: Các cặp số (x; y)...
d) \(2x-3=5x-7\)
\(\Leftrightarrow2x-5x=-7+3\)
\(\Leftrightarrow-3x=-4\)
\(\Leftrightarrow x=\dfrac{4}{3}\)
e) \(\left(-2\right)^2-8x=20\)
\(\Leftrightarrow4-8x=20\)
\(\Leftrightarrow8x=4-20\)
\(\Leftrightarrow8x=-16\)
\(\Leftrightarrow x=-2\)
f) \(17-\left(-31\right)+3x=2x-\left(-50\right)\)
\(\Leftrightarrow17+31+3x=2x+50\)
\(\Leftrightarrow48+3x=2x+50\)
\(\Leftrightarrow3x-2x=50-48\)
\(\Leftrightarrow x=2\)
g) \(2y^2-16=34\)
\(\Leftrightarrow2y^2=34+16\)
\(\Leftrightarrow2y^2=50\)
\(\Leftrightarrow y^2=50:2=25\)
\(\Leftrightarrow y^2=5^2=\left(-5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
1, Tính :
a, 5-(-3)mu2-14(-8)+(-31)
b, 6(-2 ) mu3 +5(-4)-(-12)
c, -31-[82-(-17)
2, Tìm các số nguyên x,y biết (x-1)(x+y)=3
3,Tìm x thuộc Z biết :
a, 12-|x+7|=12
b, 48:|-x+3|=12
c,|x-5|=5-x
\(12-\left|x+7\right|=12\)
\(\Rightarrow\left|x+7\right|=12-12\)
\(\Rightarrow\left|x+7\right|=0\)
\(\Rightarrow x+7=0\)
\(\Rightarrow x=0-7\)
\(\Rightarrow x=-7\)
Tìm các cặp số nguyên (x,y) nguyên biết
(x-13).y-(11+x).7=9(x+11).y-(11+x).7=5(2x-1).y+(1-2x).3=17(x+23).y-x=4(x+5).x.y-x-5=31
1 : Tính :
a, 5 - ( -3 ) mu 2 - 14 -(-8)+(-31)
b, 6(-2)mu3 + 5(-4)-(-12)
c, -31-[82-(-17)]
2: Tìm các số nguyên x , y biết : (x-1) (x+y)=3
3: Tìm x thuộc Z biết :
a, 12-|x+7|=12
b, 48:|-x+3|=12
c,|x-5|=5-x
Bài 3:
a: =>|x+7|=0
=>x+7=0
hay x=-7
b: =>|x-3|=4
=>x-3=4 hoặc x-3=-4
=>x=7 hoặc x=-1
c: =>x-5<=0
hay x<=5