l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
Bài 1:
l) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
e) Ta có: |x-4|<7
mà \(\left|x-4\right|\ge0\forall x\)
nên \(\left|x-4\right|\in\left\{0;1;2;3;4;5;6\right\}\)
\(\Leftrightarrow x-4\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
hay \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
Vậy: \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
f) Ta có: \(40< 31+\left|x\right|< 47\)
\(\Leftrightarrow\left|x\right|+31\in\left\{41;42;43;44;45;46\right\}\)
\(\Leftrightarrow\left|x\right|\in\left\{10;11;12;13;14;15\right\}\)
hay \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
Vậy: \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
g) Ta có: \(\left|x+3\right|\le2\)
\(\Leftrightarrow\left|x+3\right|\in\left\{0;1;2\right\}\)
\(\Leftrightarrow x+3\in\left\{0;1;-1;2;-2\right\}\)
hay \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
Vậy: \(x\in\left\{-3;-2;-4;-1;-5\right\}\)