\(C=x^2-yz\)
\(=\left(-7\right)^2-\left(-3\right).5\)
\(=49+15=64\)
\(D=xy^2-z\)
\(=\left(-7\right).\left(-3\right)^2-5\)
\(=\left(-7\right).9-5\)
\(=-63-5=-68\)
\(E=\left(x^2-y^2\right).z\)
\(=\left[\left(-7\right)^2-\left(-3\right)^2\right].5\)
\(=\left(49-9\right).5\)
\(=40.5=200\)
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\dfrac{3^{101}-3}{2}\)
\(B=1-2+2^2-2^3+...-2^{99}+2^{100}\\ 2B=2-2^2+2^3-2^4+...-2^{100}+2^{101}\\ 2B+B=\left(2-2^2+2^3-2^4+...-2^{100}+2^{101}\right)+\left(1-2+2^2-2^3+...-2^{99}+2^{100}\right)\\ 3B=2^{101}+1\\ B=\dfrac{2^{101}+1}{3}\)