Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Ánh Vy HN
Xem chi tiết
Akai Haruma
30 tháng 8 2019 lúc 20:10

a)

\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)

\(=\sqrt{3}(2-3+1)=0\)

b)

\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)

\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)

\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)

\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)

------------------

\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)

\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)

Akai Haruma
30 tháng 8 2019 lúc 20:15

c)

\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)

\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)

\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)

d)

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

Selena Nguyễn
Xem chi tiết
Luân Đào
19 tháng 6 2019 lúc 13:23

\(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)

\(\Leftrightarrow\sqrt{3}\left(x+1\right)=\sqrt{3\cdot2^2}+\sqrt{3\cdot3^2}\)

\(\Leftrightarrow\sqrt{3}\left(x+1\right)=\sqrt{3}\left(2+3\right)\)

\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)

N T Ánh
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 8 2016 lúc 10:07

ĐK : \(x\ge0\)

\(\sqrt{3x}+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3x}=\sqrt{3}\left(2+3-1\right)\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{3}\Leftrightarrow x=\left(\frac{4\sqrt{3}}{\sqrt{3}}\right)^2=16\)

Võ Đông Anh Tuấn
18 tháng 8 2016 lúc 10:05

Hình như đề sai

Isolde Moria
18 tháng 8 2016 lúc 10:08

\(\sqrt{3}.x+\sqrt{3}=\sqrt{12}+\sqrt{17}\)

\(\Rightarrow\sqrt{3}\left(\sqrt{x}+1\right)=\sqrt{3}\left(\sqrt{4}+\sqrt{9}\right)\)

\(\Rightarrow\sqrt{x}+1=5\)

\(\Rightarrow\sqrt{x}=4\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)

Lương Tấn	Sang
Xem chi tiết

\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10  đk  \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3

\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10

\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10

(1 + 3 - 2)\(\sqrt{x+3}\) = 10

2\(\sqrt{x+3}\) = 10

   \(\sqrt{x+3}\) = 10: 2

   \(\sqrt{x+3}\) = 5

    \(x+3\) = 10

    \(x\) = 10 - 3

    \(x\) = 7 ( thỏa mãn) 

Vậy \(x\) = 7

 

Lương Tấn	Sang
Xem chi tiết

\(\sqrt{3-x}\) - \(\sqrt{12-4x}\) + \(\sqrt{27-9x}\)  = 20 đk \(3-x\) ≥ 0 ⇒ \(x\le3\)

\(\sqrt{3-x}\) - \(\sqrt{4.\left(3-x\right)}\) + \(\sqrt{9.\left(3-x\right)}\) = 20 

\(\sqrt{3-x}\) - 2\(\sqrt{3-x}\) + 3\(\sqrt{3-x}\) = 20

\(\sqrt{3-x}\).( 1 - 2 + 3) = 20

2\(\sqrt{3-x}\) = 20

   \(\sqrt{3-x}\) = 20: 2

    \(\sqrt{3-x}\) = 10

     3 - \(x\) = 100

           \(x\) = 3 - 100 

          \(x\) = -97 (thỏa mãn)

Vậy \(x\) = -97

 

 

Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

hbvvyv
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 20:52

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-4x+4}=7\)

=>\(\sqrt{\left(x-2\right)^2}=7\)

=>|x-2|=7

=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

b: ĐKXĐ: x>=-3

\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)

=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)

=>\(3\sqrt{x+3}=6\)

=>\(\sqrt{x+3}=2\)

=>x+3=4

=>x=1(nhận)

123 nhan
Xem chi tiết
HT.Phong (9A5)
24 tháng 7 2023 lúc 7:21

9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)

\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)

\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)

\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)

\(=-5\sqrt{3x}++27\)

11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)

\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)

\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)

\(=14\sqrt{2x}+28\)

12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)

\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)

\(=13\sqrt{5a}+\sqrt{a}\)