= \(\sqrt{3}.x+\sqrt{3}=8,660254038=5\sqrt{3}\)
= \(\sqrt{3}.x=5\sqrt{3}-\sqrt{3}=4\sqrt{3}\)
=> x = \(4\sqrt{3}:\sqrt{3}=4\)
\(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Rightarrow\sqrt{3}\left(x+1\right)=5\sqrt{3}\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
\(\sqrt{3}\cdot x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}\left(x+1\right)=2\sqrt{3}+3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(x+1\right)=\sqrt{3}\left(2+3\right)\)
\(x+1=5\)
\(x=4\)