cho a.b.c = 2016 tính : \(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016.c}{a.c+2016.c+2016}\)
Cho a, b, c thõa mãn : a.b.c = 2016
Tính : \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)
\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016+b+bc}{2016+b+bc}=1\)
Thay : 2016 = abc
ta có :
\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)
Chúc bạn học tốt !
cho a.b.c= 2016
tính\(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016c}{ac+2016c+2016}\)giải chi tiết hộ mình
\(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016c}{ac+2016c+2016}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{a}{a.\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac.\left(1+bc+b\right)}\)
\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}\)
\(=\frac{1+b+bc}{b+bc+1}=1\)
Cho các số a, b, c thỏa mãn abc = 2016
Tính A = \(\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
cho\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
tính A=\(\frac{a^{2016}}{b^{2016}}+\frac{b^{2016}}{c^{2016}}+\frac{c^{2016}}{d^{2016}}+\frac{d^{2016}}{a^{2016}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)Thao vào A ta được :
\(A=\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}=1+1+1+1=4\)
Cho 3 số a,b,c thỏa mãn: a+b+c=2016 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) Tính : A=(a2016-b2016)(b2016-c2016)(c2016-a2016)
Cho a,b,c >0 , a+b+c=2016. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{bc}{2016-a}+\frac{ca}{2016-b}+\frac{ab}{2016-c}\)
Ta co:
\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)
Dau '=' xay ra khi \(a=b=c=672\)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính \(P=\frac{\left(ab+bc+ca\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) Chứng minh \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=1\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)
(áp dụng tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)
\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)
Cho a,b,c>0 và ab+bc+ca=2016.
Chứng minh:
\(\sqrt{\frac{bc}{a^2+2016}}+\sqrt{\frac{ac}{b^2+2016}}+\sqrt{\frac{ab}{c^2+2016}}\) \(\le\frac{3}{2}\)
Cứu tôi!!!