cho a.b.c= 2016
tính\(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016c}{ac+2016c+2016}\)giải chi tiết hộ mình
Cho \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\).Chứng minh \(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
cho a,b,c>0 thỏa mãn abc=1.chứng minh \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)
Cho \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+ \(\frac{z^2}{c^2}\)=\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
CMR: \(\frac{x^{2016}}{a^{2016}}\)+ \(\frac{y^{2016}}{b^{2016}}\)+ \(\frac{z^{2016}}{c^{2016}}\)= \(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho
\(a+b+c=2016\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\)
Cmr a hoặc b hoặc c bằng 2016
cho \(a^2+b^2+c^2=ab+bc+ca\)(a,b,c thuộc R;khác 0)
tính:\(P=\frac{a^4}{b^4}+\frac{b^4}{c^4}+\frac{c^{2016}}{a^{2016}}\)
\(Cho:a+b+c=2016;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2016}\)
Tính:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a+b+c=0 và ab+ac+bc=0.Tính M=(a-2016)^2016+(b-2016)^2016-(c-2016)^2016
Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: \(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)