1
a)cho : x+y+1
TÍNH x3+3xy+y3
b)cho m,n,p thỏa mãn :
m+n+p=15
và m2+n2+p2=77
TÍNH mn+np+mp
Chứng minh :
m3 + n3 + p3 -3mnp = (m+n+p)(m2 + n2 + p2 - mn - np - mp)
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
m3+n3+p3-3nmp=(m+n+p)(m2+n2+p2-mn-np-mp)
chứng minh đẳng thức sau
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
Trong không gian cho hai điểm A(x; y; z), B(m, n, p) thay đổi nhưng luôn thỏa mãn các điều kiện x 2 + y 2 + z 2 = 4, m 2 + n 2 + p 2 = 9. Vectơ AB → có độ dài nhỏ nhất là:
A. 5
B. 1
C. 13
D. Không tồn tại
Đáp án B
Từ giả thiết suy ra
Do đó AB ≥ |OA - OB| = 1. Dấu bằng xảy ra khi O nằm ngoài đoạn AB. Suy ra đáp án đúng là B.
Hai đáp án A, D sai do nhầm OA = x 2 + y 2 + z 2 = 4; OB = m 2 + n 2 + p 2 = 9
Đáp án C sai do nhầm với câu hỏi vectơ AB→ có độ dài lớn nhất
Trong không gian Oxyz, cho các điểm M(0;0;0), N(0;n;0), P(0;0;p) không trùng với gốc tọa độ và thỏa mãn m 2 + n 2 + p 2 = 3 . Tìm giá trị lớn nhất của khoảng cách từ điểm O đến mặt phẳng (MNP)
A. 1 3
B. 3
C. 1 3
D. 1 27
Trong không gian Oxyz, cho các điểm M ( 0 ; 0 ; 0 ) , N ( 0 ; n ; 0 ) , P ( 0 ; 0 ; p ) không trùng với gốc tọa độ và thỏa mãn m 2 + n 2 + p 2 = 3 . Tìm giá trị lớn nhất của khoảng cách từ điểm O đến mặt phẳng (MNP)
A . 1 3 .
B . 3 .
C . 1 3 .
D . 1 27 .
Bài 1
Cho a,b thỏa mãn: a+b=23 , ab=132
a) Tính giá trị của biểu thức a^2 + b^2
b)Cho x,y thỏa mãn : x+y= 1
Tính giá trị của biểu thức : x^3 +3xy +y^3
c) Cho m , n , p thỏa mãn
m+n+p=15 và m^2 +n^2 +p^2=77
Tính mn+np+pm
THANKS
\(a)\) Ta có :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\)\(a^2+b^2=\left(a+b\right)^2-2ab\)
Thay \(a+b=23\) và \(ab=132\) vào \(a^2+b^2=\left(a+b\right)^2-2ab\) ta được :
\(a^2+b^2=23^2-2.132\)
\(a^2+b^2=529-264\)
\(a^2+b^2=265\)
Vậy \(a^2+b^2=265\)
Chúc bạn học tốt ~
a,\(a^2+b^2=\left(a+b\right)^2-2ab\)
thay a+b=23 và ab=132 vào tính nhé
b,theo đề ra ta có \(x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)(1)
thay x+y=1 vào (1)
ta đc \(x^3+y^3+3xy=1\)
bài 2
theo đề ra ta có \(\left(m+n+p\right)^2=255\Leftrightarrow m^2+n^2+p^2+2\left(mn+np+mp\right)=225\)(1)
thay \(m^2+n^2+p^2=77\) vào(1)
=>mn+np+mp=74
\(b)\) Ta có :
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^3=1^3\)
\(\Leftrightarrow\)\(x^3+3x^2y+3xy^2+y^3=1\)
\(\Leftrightarrow\)\(x^3+3xy\left(x+y\right)+y^3=1\)
\(\Leftrightarrow\)\(x^3+3xy.1+y^3=1\)
\(\Leftrightarrow\)\(x^3+3xy+y^3=1\)
Vậy \(x^3+3xy+y^3=1\)
Chúc bạn học tốt ~
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
các bạn giúp mình bài này nha:
a. cho m,n,p thỏa mãn:
_ m+n+p=15 và m2+n2+p2 = 77
tính mn+np+mp
b, cho (a+b+c)2= 3(ab+bc+ca) thì a =b =c
Cho x,yÎR thỏa mãn: 3 x 2 + y 2 - 2 . l o g 2 ( x - y ) = 1 2 1 + log 2 1 - x y . Tìm giá trị lớn nhất của M = 2 ( x 3 + y 3 ) - 3 x y .
A. 13 2
B. 17 2
C. 3
D. 7