chứng tỏ:
A, a/n.(n+a)=1/n-1/n+a
B, dựa vào câu A, tính: 1/15+1/35+...+1/2499
chứng minh rằng: a) a/n.n(n+a)=1/n-1/n+a ; b) áp dụng câu a tính: A=1/2.3+1/3.4+...+1/99.101 ; B=5/1.4+5/4.7+...+5/100.103 ; C=1/15+1/35+...+1/2499
Bài 1: a) Chứng minh rằng: a/n(n+a) = 1/n- 1/n+a (a,n€ N*)
b) Áp dụng câu a tinh :
A = 1/2x3 + 1/3×4 +...+ 1/99×100
B= 5/1×4 + 5/4×7 + ...+ 5/100×103
C = 1/15 + 1/35 + ... + 1/2499
Bài 2:
Chứng tỏ rằng ps n+1/n+2 tối giản với mọi n là số tự nhiên
A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
B = 5/1*4 + 5/4*7 + .... + 5/100*103
B = 5/3*(3/1*4 + 3/4*7 + ... + 3/100*103)
B = 5/3*(1 -1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)
B = 5/3*(1 - 1/103)
B = 5/3* 102/103
gọi ƯC(n + 1; n + 2) = d
=> n + 1 chia hết cho d và n + 2 chia hết cho d
=> n + 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = + 1
=> n+1/n+2 là phân số tối giản với mọi n là stn
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
_ Chứng minh rằng
a .
a / n ( n+ a ) = 1/ n - 1 / n + a ( n , a thuộc N * )
_ dấu / bằng chữ phần
b. Áp dụng câu a tính
A = 1/23 + 1/34 + ... + 1/99.100
B = 5/1.4 + 5 / 4.7 +.... + 5/100.103
C = 1/15 + 1/35 + ... + 1/2499
chứng minh rằng :
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\) ( n , a ϵ N* )
b) áp dụng câu a tính ;
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)
b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
a. Chứng minh rằng
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Nsao\right)\)
b. Áp dụng câu a tính:
A= \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
B= \(\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)
C= \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
b) A=1/2.3+1/3.4+....+1/99.100
=> A=1/2-1/3+1/3-1/4+....+1/99-1/100
=> A=1/2-1/100
=> A=50/100-1/100
=> A=49/100
a) chứng tỏ rằng với n thuộc N, n khác 0
1/ n(n+1)= 1/n - 1/ n+1
b) áp dụng kết quả ở câu a) để tính nhanh:
A= 1/ 1.2+1/ 2.3+ 1/3.4+......+1/9.10
a) Vì n.(n+1) = 1/n-1/n+1 suy ra n thuộc N n khác 0
b) A=1/1*2+1/2*3+1/3*4+...+1/9.10
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
A=1-1/10=9/10
Vậy A = 9/10
Bài 1: Cho biểu thức: A= (-a-b-c)- (-a-b-c)
a) Rút gọn
b)Tính giá trị của A khi a=1, b=-1,c=2
Bài 2:
CMR:
a) a\n.(n+a)= 1\n- 1\n+a
b) A=1\2.3+1\3.4+1......+1\99.100
C=1\15+1\35+........+1\2499
Bài3:Chứng tỏ rằng các ps sau tối giản vs mọi số tự nhiên N:
a,n+1\2n+3
b,2n+3\4n+8
Bai4:Cho a=n+2\n-5 (n thuộc z, n khác 5) tìm n để a thuộc z
Bài 5 chứng tỏ ps 2n+1\3n+2 là ps tối giản
Bài 6: Với giá trị của x thuộc z các ps sau có giá trị la 1 số nguyên
a.A= 3\x-1
b.B=x-2\x+3
c.C=2x+1\x-3
d.D=x^2-1\x+1
Giúp tui với
1. a, \(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(A=-a+b-c+a+b+c\)
\(A=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(A=0+2b+0\)
\(A=2b\)
b, Thay \(a=1;b=-1;c=2\) ta có:
\(A=\left(-1+1-2\right)+\left(1+1-2\right)\)
\(A=-2+0=-2\)
Bài 1: Cho hình vẽ, biết \(n\perp AB\) tại B, \(\widehat{F_1}\)=\(120^o\).
a) Chứng tỏ m//n.
b) Tính \(\widehat{E_1}\).
c) Chứng tỏ \(m\perp AB\). Vì sao?
Dạng toán nâng cao
Câu 1:Chứng minh rằng\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\) ( n, a \(\in\) N*)
Câu 2: Áp dụng tính:
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
-Ai làm nhanh thì mình tick cho nha! Cảm ơn nhiều-
Câu 1 :
1/n - 1/n + a = a + n/a ( a + n ) = a + n - a/a ( n + a ) = n/a ( a + n )
Câu 2 :
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.......+ 1/99 - 1/100
= 1/1 - 1/100 = 99/100