Tìm các giá trị nguyên của x để đa thức A=12x^3-7x^2-14x+14 chia hết cho đa thức B=4x-5
Giá trị nguyên x<0 để gt của đa thức :
\(A=12x^3-7x^2-14x+14\) chia hết cho gt của đa thức \(B=4x-5\)
\(A=3x^2\left(4x-5\right)+2x\left(4x-5\right)-\left(4x-5\right)+9\)
\(A=\left(4x-5\right)\left(3x^2+2x-1\right)+9\)
vậy 4x-5 là ước của 9.
x<0=> 4x-5=-9=> x=-1
p/s: Cách tốt nhất để nó không xuất hiện khi nhất chưa ai giải
Tìm giá trị nguyên của x để:
a) Đa thức 10x^2 - 7x - 5 chia hết cho đa thức 2x - 3
b) Đa thức x^3 - 4x^2 + 5x - 1 chia hết?
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
Nguồn ; lazi
a,tìm giá trị của a để đa thức 3x2 + 7x + a +4 chia hết cho đa thức x - 5
b,tìm giá trị của b để đa thức 2x3 - 3x2 + x +b chia hết cho đa thức x + 2
tìm x thuộc Z để giá trị của đa thức M=3x^3+4x^2-7x+5 chia hết cho giá trị của đa thức N=x-3
\(M⋮N\\ \Rightarrow3x^3+4x^2-7x+5⋮x-3\\ \Rightarrow3x^3-9x^2+13x^2-39x+32x-96+101⋮x-3\\ \Rightarrow3x^2\left(x-3\right)+13x\left(x-3\right)+32\left(x-3\right)+101⋮x-3\\ \Rightarrow x-3\inƯ\left(101\right)=\left\{-101;-1;1;101\right\}\\ \Rightarrow x\in\left\{-98;2;4;104\right\}\)
\(x\in\left\{-98;2;4;104\right\}\)
gia trị nguyeen của x<0 đẻ giá trị của da thức A=12x^3-7x^2-14x+14 chia haeets cho gia trị của da thức B=4x-5 là
Để A chia hết cho B thì \(12x^3-7x^2-14x+14⋮4x-5\)
\(\Leftrightarrow12x^3-15x^2+8x^2-10x+4x-5+19⋮4x-5\)
\(\Leftrightarrow4x-5\in\left\{1;-1;19;-19\right\}\)
mà x là số nguyên âm
nên \(x\in\varnothing\)
a). Tìm a để đa thức \(2x^3-x^2+4x+a\) chia hết cho đa thức \(x+2\)
b). Tìm số nguyên n để \(2n^2-n+2\) chia hết cho \(2n+1\)
c). Tìm giá trị nhỏ nhất của đa thức M = \(2x^2-8x-10\)
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
Cho đa thức A=x3 + 3x2 + 3x -2 và đa thức B= x+1
a) Thực hiện phép chia đa thức A cho đa thức B.
b) Tìm các giá trị nguyên của x để giá trị của đa thức A chia hết cho giá trị của đa thức B.
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
a) Tìm số m để đa thức 5x3 + 2x2 - 7x + m chia hết cho đa thức x -3
b) Tìm giá trị nguyên của n để giá trị của A = 10n2 + 3n - 17 chia hết cho giá trị của B = 2n -1
tìm x nguyên để giá trị của đa thức A chia hết cho giá trị của đa thức B.
a) A = -2x3-3x2+12x+2 và B =2x-1
b) A =-3x3+x2+15x-6 và B =3x+1