Xét 2 tập hợp
A={n\(\in\)N| n là bội của 4 và 6}
B={n\(\in\)N| n là bội của 12}
Hãy kiểm tra các kết luận sau
a) A\(\subset\)B
b) B\(\subset\)A
Xét hai trường hợp
A = { n ∈ N | n là bội của 4 và 6}
B = { n ∈ N | n là bội của 12}
Kiểm tra các kết luận sau
a)A ⊂ B b)B ⊂ A
Cho hai tập hợp:
\(A = \{ 0;6;12;18\},\)
\(B = \{ n \in N|\, n \le 18\) và n là bội của 6}.
Các mệnh đề sau có đúng không?
a) \(A \subset B.\)
b) \(B \subset A.\)
a) Nếu n là bội chung của 2 và 3 thì n là bội của 6, hay \(n \in B\)
Vậy mệnh đề \(A \subset B\) đúng.
b) Nếu n là bội 6 thì n vừa là bội của 2 vừa là bội của 3.
Do đó n là bội chung của 2 và 3 hay \(n \in A\).
Vậy mệnh đề \(A \subset B\) đúng.
Cho hai tập hợp \(A=\left\{\frac{3n}{n+1}n\in N,n< 4\right\}\)
\(B=\left\{x\in R,2x^3-x^2-6x=0\right\}\)
Tìm tất cả các tập X sao cho \(A\cap B\subset X\subset A\cup B\)
Cho hai tập hợp:
\(A = \{ n \in N|n\)chia hết cho 3},
\(B = \{ n \in N|n\)chia hết cho 9}.
Chứng tỏ rằng \(B \subset A.\)
Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)
cho biết x là một phần tử của tập hợp A. xét các mệnh đề sau:
(1). x\(\in\)A
(2). {x}\(\in\)A
(3). x\(\subset\)A
(4). {x}\(\subset\)A
mệnh đề đúng là:
Cho A = { x \(\in\) N | x chia hết cho 4} , B = { x \(\in\) N | x chia hết cho 6}, C = { x \(\in\) N | x chia hết cho 12}. CHứng minh rằng:
a. A \(\subset\) C và B \(\subset\) C
b. A \(\cup\) B = C
c. A không phải là con của B
a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm
B ⊂ C Ta có x chia hết cho 12 mà 12 chia hết cho 6 => đpcm
b) A ∪ B = { x ∈ N | x chia hết cho 4 và x chia hết cho 6 }
Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm
c ) Với x=4 thì x chia hết cho 4 thỏa mãn A
x không chia hết cho 6 không thỏa mãn B
=>A không phải là con của B.
Chia tập các số nguyên dương N* thành A và B rời nhau. Chứng minh rằng với mọi n \(\in\) N* luôn tồn tại a và b khác nhau lớn hơn n sao cho { a; b; a + b } \(\subset\) A hoặc { a; b; a + b } \(\subset\) B.
Viết tập hợp sau đây dưới dạng liệt kê các phần tử và tìm số phần tử của mỗi tập hợp đó:
a) Tập hợp A các ước của 24
b) Tập hợp B gồm các chữ số trong số 1113305;
c) \(C = \{ n \in \mathbb{N}|\;n\) là bội của 5 và \(n \le 30\} \)
d) \(D = \{ x \in \mathbb{R}|\;{x^2} - 2x + 3 = 0\} \)
a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{ - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)
b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)
c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)
d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)