y x3 +y x2 +y x5 =2022
Trong các hàm số sau có bao nhiêu hàm số có đồ thị nhận gốc tọa độ làm tâm đối xứng:
y = x 2 + 1 ; y = x 5 + x 3 ; y = x ; y = x x 2 + 1 ; y = x 3 + x 2 ; y = x 2 − 2 x + 3 ; y = 3 − x + x + 3 x 2
A. 2
B. 3
C. 1
D. 4
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
Tính giá trị của biểu thức sau khi x = 2; y = –2
C = x.(x2 – y).(x3 – 2y2).(x4 – 3y3).(x5 – 4y4).(x6 – 5y5)
Tính giá trị của biểu thức sau khi x = 2; y = –2
C = x.(x2 – y).(x3 – 2y2).(x4 – 3y3).(x5 – 4y4).(x6 – 5y5)
Ta có: \(x^3-2y^2=2^3-2\cdot\left(-2\right)^2=8-8=0\)
Do đó: C=0
thay x=2; y=-2 vào \(x^3-2y^2=2^3-2\left(-2\right)^2=8-8=0\)
\(\Rightarrow C=0\)
ko hiểu thì nhìn ở trên các số nhân với nhau nhưng mà lại có 1 thừa số =0 nên cả cái biểu thức =0
Phân tích đa thức thành nhân tử giúp mình với ạ , mình cảm ơn trc :((((
a) 7x.(-y)+2(y-x)2
b) ( x2+4 )-16 x2
c)x5-x4+x3-x2
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a) 7x.(-y)+2(y-x)2
=>-7xy+4y-4x
b)(x^2+4)-16x^2
=>x^2+4-16x^2
=>-15x^2+4
c)x^5-x^4+x^3-x^2
=>x^4(x-1)+x^2(x-1)
=>(x^4+x^2)(x-1)
Cho 2 đa thức j (x) = x5 - x3 - x2 - 2x +5 và g (x) = x2 - 3x + 1 + x2 - x4 + x5.
Hãy tính tổng j (x) + g (x)
\(Tacó:f\left(x\right)+g\left(x\right)=x^5-x^3+x^2-2x+5+x^2-3x+1+x^2-x^4+x^5\)
Ta có : j(x) + g(x) = (x5 - x3 - x2 - 2x +5 )+( x2 - 3x + 1 + x2 - x4 + x5)
= x5 - x3 - x2 - 2x +5+x2 - 3x + 1 + x2 - x4 + x5
=(x5 + x5) + (-3x - 3x) + (-2x+2x-2x)+ (5 +1) -4x
= 10x - 6x - 2x +6 - 4x
= -2x +6
Vậy j(x) + g(x) = -2x +6
\(j\left(x\right)+g\left(x\right)=2x^5-x^4-x^3+x^2-5x+6\)
#Walker
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))