\(Tacó:f\left(x\right)+g\left(x\right)=x^5-x^3+x^2-2x+5+x^2-3x+1+x^2-x^4+x^5\)
Ta có : j(x) + g(x) = (x5 - x3 - x2 - 2x +5 )+( x2 - 3x + 1 + x2 - x4 + x5)
= x5 - x3 - x2 - 2x +5+x2 - 3x + 1 + x2 - x4 + x5
=(x5 + x5) + (-3x - 3x) + (-2x+2x-2x)+ (5 +1) -4x
= 10x - 6x - 2x +6 - 4x
= -2x +6
Vậy j(x) + g(x) = -2x +6
\(j\left(x\right)+g\left(x\right)=2x^5-x^4-x^3+x^2-5x+6\)
#Walker
j (x) + g ( x ) = ( x5 - x3 - x2 - 2x + 5 ) + ( x2 - 3x + 1 + x2 - x4 + x5 )
= x5 - x3 - x2 - 2x + 5 + x2 - 3x + 1 + x2 - x4 + x5
= ( x5 + x5 ) + ( - 3x - 3x ) + ( - x2 + x2 + x2 ) + ( 5 + 1 ) + ( - x4 ) + ( -2x )
= x10 - 9x + x2 + 6 - x4 - 2x