thu gọn đa thức f(X)= -x+2x^2-1/2+3x^5+5
cho hai đa thức:
f(x)=-x+2x^2-1/2+3x^5+5 và g(x)=3-x^5+1/3x^3+3x-2x^5-2x^2-1/3x^3
a)thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm ngiệm của đa thức
h(x)=f(x)+g(x)
Cho đa thức
f(x)= 2x^3 - x^5 + 3x^4 + x^2 - 1 phần 2 x^3 + 3 x ^ 5 - 2x^2 - x^4 +1
a) Thu gọn và sắp xếp đa thức trên theo lũy thừa giảm của biến
b) Tìm bậc của đa thức
c) Tính f (1) ; f ( - 1)
a) Ta có:
\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)
\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
b) Bậc của đa thức f(x) là 5
c) Ta có:
\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.
\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.
bài 1: cho hai đa thức f(x) = -x + 2x^2 - 1/2 + 3x^5 + 5
g(x) = 3-x^5 + 1/3x^3 + 3x - 2x^5 - 2x^2 - 1/3x^3
a) thu gọn và sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến
b) tính f(x) + g(x)
c) tìm nghiệm của đa thức h(x) = f(x) + g(x)
a)f(x)=2x2(x-1)-5(x+2)-2x(x-2)+x2(2x-3)-x(x+1)-(3x-2) thu gọn đa thức và sắp xếp giúp mik vs
=2x^3-2x^2-5x-10-2x^2+4x+x^2(2x-3)-x(x+1)-3x+2
=2x^3-4x^2-4x-8+2x^3-6x^2-x^2+x
=4x^3-11x^2-3x-8
Bài 1: Cho đa thức f(x)= \(2x^3-x^5+3x^4+x^2-0,5x^3-2x^2-x^4+1.\)
a) Thu gọn và xác định bậc của đa thức trên.
b) Sắp xếp đa thức theo lũy thừa giảm dần của biến.
Bài 2: Cho A(x)=\(3x^5+2x^4-4x^2-2x+1\)và B(x)=\(-x^4+3x^3-2x^2+x^3-3x+2-3x^{\text{4}}.\)
a) Thực hiện thu gọn ( nếu có) các đa thức trên.
b) Tính 2A(x)+3B(x); 4A(x)-5B(x).
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Cho f(x) -3x^2-2x+x^2(x-4)+2x^3+4x^2-5;
p(x)= 2x^4+2x^2(x+3)-2x^3(x+1)-5x^2-1 .
Thu gọn và tìm nghiệm của đa thức f(x); p(x)
Thu gọn các đa thức sau:
a) P(x) = −x(x + 5) − (2x − 3) + x^2(3x − 2)
b) Q(x) = 2x(x + 1) + 3x(5 − x) − 7(x − 5).
a) \(P\left(x\right)-x\left(x+5\right)-\left(2x-3\right)+x^2\left(3x-2\right)\)
\(P\left(x\right)=-x^2-5x-2x+3+3x^3-2x^2\)
\(P\left(x\right)=3x^3+\left(-x^2-2x^2\right)-\left(5x+2x\right)+3\)
\(P\left(x\right)=3x^3-3x^2-7x+3\)
b) \(Q\left(x\right)=2x\left(x+1\right)+3x\left(5-x\right)-7\left(x-5\right)\)
\(Q\left(x\right)=2x^2+2x+15x-3x^2-7x+35\)
\(Q\left(x\right)=-x^2+10x+35\)
a: P(x)=-x^2-5x-2x+3+3x^3-2x^2
=3x^3-3x^2-7x+3
b: Q(x)=2x^2+2x+15x-3x^2-7x+35
=-x^2+10x+35
Bài 1:Cho đa thức P(x)=3x^4+2x^2-3x^4-2x^2+2x-5 a)Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến b)Tính P(-1);P(3) Bài 2:Cho 2 đa thức f(x)=x^2-6x+4 và g(x)=x^2-4x-2 a)Tính f(x)+g(x) b)Tính f(x)-g(x) c)Tìm x sao cho h(x)=f(x)-g(x)=0
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
Bài 2:
a) Ta có: f(x)+g(x)
\(=x^2-6x+4+x^2-4x-2\)
\(=2x^2-10x+2\)