Cho tam giác ABC vuông tại A đường cao AH biết AB=12cm AC=16cm Chứng minh tam giác ABC tam giác HBA .từ đó tính độ dài BC và CH Kẻ đường phân giác ADC (D€BC) tính độ dài BD,HD
cho tam giác ABC vuông tại A có AB=9cm, AC=12cm. Kẻ đường cao AH và đường phân giác AI của tam giác ABC a) chứng minh tam giác HBA ~ tam giác ABC b) tính độ dài BC,BI c) kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC). chứng minh tam giác AED~ tam giác ABC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
Cho tam giác ABC vuông tại A , có AB = 12 cm ; AC = 16cm . Kẻ đường cao AH ( H ∈ BC )
a) Chứng minh ▲HBA đồng dạng ▲ABC
b) Tính độ dài các đoạn thẳng BC , AH
c ) Trong ▲ABC kẻ phân giác AD ( D∈ BC ) . Trong ▲ADB kẻ phân giác DE ( E ∈ AB) trong ▲ADC kẻ phân giác DF ( F ∈ AC )
Chứng minh ràng : \(\dfrac{EA}{EB}\) . \(\dfrac{DB}{DC}\) . \(\dfrac{FC}{FA}\) = 1
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D a/ chứng minh tam giác HBA đồng dangj tam giác ABC b/ Tính độ dài cạnh BC c/ tính tỉ số diện tích của hai tam giác ABD và ACD d/ Tính độ dài các đoạn thẳng BD và CD
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
cho tam giác ABC cân tại A , có AB=12cm , AC=16cm kẻ đường cao AH (H thuộc BC)
a)chứng minh tam giác HBA đồng dạng tam giác ABC
b)tính độ dài đoạn thẳng BC,AH
đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
DO đó: ΔHBA∼ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Do E là chân đường phân giác góc D, theo định lý phân giác:
\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)
\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)
Câu a quá dễ rồi bạn tự làm
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=20\) (cm)
Theo câu a, do 2 tam giác vuông HBA và ABC đồng dạng
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Cho △ ABC vuông tại A , có AB = 12cm ; AC = 16cm . Kẻ đường cao AH ( H ∈ BC )
a , Chứng minh : △HBA đồng dạng △ABC
b , Tính độ dài các đoạn thẳng BC , AH .
c , Trong △ABC kẻ phân giác AD ( D ∈ BC ) . Trong △ADB kẻ phân giác DE ( E ∈ AB ) ; trong △ADC kẻ phân giác DF ( F ∈ AC )
Chứng minh rằng : EA/EB.DB/DC.FC/FA = 1
giúp em với mọi người ơiiiii
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
Cho tam giác ABC vuông tại A , AB = 12cm , AC = 16cm . Đường phân giác góc A cắt BC tại D .
a) TÍnh độ dài BC ,BD,CD
b) Kẻ đườg cao AH . Tính AH , HD và AD
a) Áp dụng định lý Pi-ta-go vào \(\Delta\)vuông ABC có :
\(AB^2+AC^2=BC^2\Leftrightarrow BC=20\left(cm\right)\)
Do AD là phân giác \(\widehat{A}\)theo tính chất đường phân giác , ta có :
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{BD+CD}=\frac{3}{3+4}\Rightarrow\frac{BD}{BC}=\frac{3}{7}\)
\(\Rightarrow BD=\frac{3}{7}BC=\frac{60}{7}\)
\(\Rightarrow DC=BC-BD=\frac{80}{7}\)
b) AH là đường cao \(\Delta\)vuông ABC nên :
\(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)
\(\Rightarrow AH=\frac{AB.C}{BC}=\frac{48}{5}\left(cm\right)\)
Ta có :
\(BH^2=AB^2-AH^2\Rightarrow BH=\frac{36}{5}\left(cm\right)\)
\(\Rightarrow DH=BD=BH=\frac{48}{35}\left(cm\right)\)
\(AD^2=DH^2+AH^2\Rightarrow AD=\frac{48\sqrt{2}}{7}\left(cm\right)\)
Cho tam giác abc vuông tại A, có AB = 12cm, AC = 16cm, vẽ đường cao AH và đường phân giác BD của tam giác ABC a) Chứng minh tam giác ABC đồng dạng tam giác HBA b) Tính độ dài BC,BH,BD c) Tính tỉ só diện tích của tam giác ABH và tam giác ABD d) Gọi E là hình chiếu của D lên AC. Tính độ dài đoạn thẳng AC
Mọi người ơi giúp em với ạ huhu
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6