Tìm x,biết x4 + 6x3 - 60x + 100 = 11x2
Phân tích đa thức thành nhân tử : x4 + 6x3 + 11x2 + 6x + 1
\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+3x^3+x^2+3x^3+9x^2+3x+x^2+3x+1\)
\(=\left(x^2+3x+1\right)^2\)
Cho f(x)=x4+6x3+11x2+6x
a/ Chứng minh f(x) ⋮ 24
b/ Điều kiện cho x để f(x) ⋮ 5
c/ Điều kiện cho x để f(x) ⋮ 72
\(f\left(x\right)=x^4+6x^3+11x^2+6x=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\) là số nguyên nên \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích của \(4\) số nguyên liên tiếp nên trong đó có nhất một số chia hết cho \(4\), một số chia hết cho \(3\), một số chia hết cho \(2\) nhưng không chia hết cho \(4\) nên \(f\left(x\right)\) chia hết cho \(2.3.4=24\).
Để \(f\left(x\right)\) chia hết cho \(5\) thì \(x,x+1,x+2,x+3\) có một số chia hết cho \(5\).
Có \(72=2.4.9\) nên để \(f\left(x\right)\) chia hết cho \(72\) thì trong \(4\) số \(x,x+1,x+2,x+3\) có một số chia hết cho \(9\) hoặc hai số chia hết cho \(3\), suy ra \(x\) chia hết cho \(3\).
Giup mik với :
C1/.x4+2x3-4x-4 C2/ x(x+2y)3-y(2x+y)3 C3/. x4- 30x2+31x-30 C4/. 60x+18x2- 6x3 C5/. x4+6x+8 C6/. x4- 5x2+x3 -5x
Tìm x:
a) x(x-1)+x=4
b) 3x(x-5)-2x+10=0
c) 5x2-3x-2=0
d) x4-11x2+18=0
a) \(x^2-x+x=4\)
\(x^2=4\)
\(x=\pm2\)
b) \(3x\left(x-5\right)-2\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x-2\right)=0\)
\(\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(a+b+c=5-3-2=0\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{c}{a}=\dfrac{-2}{5}\end{matrix}\right.\)
d) Đặt \(x^2=t\left(t\ge0\right)\) . Lúc đó phương trình trở thành :
\(t^2-11t+18=0\)
\(\left[{}\begin{matrix}t=9\left(tmđk\right)\\t=2\left(tmđk\right)\end{matrix}\right.\)
\(t=9\rightarrow x^2=9\rightarrow x=\pm3\)
\(t=2\rightarrow x^2=2\rightarrow x=\pm\sqrt{2}\)
Phân tích đa thức thành nhân tử :
a.x4 - 4x3 + 11x2 - 16x + 16
b.x4 + 6x3 + 13x2 + 12x + 4
c.x4 + x3 - 4x2 + x + 1
d.x4 + x3 - 4x2 + x + 1
c: \(x^4+x^3-4x^2+x+1\)
\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)
Tìm hệ số cao nhất của đa thức k(x) biết f(x) + k(x) = g(x) và f ( x ) = x 4 - 4 x 2 + 6 x 3 + 2 x - 1 ; g ( x ) = x + 3
A. -1
B. 1
C. 4
D. 6
Nhận thấy số hạng có lũy thừa cao nhất của biến là - x 4 nên hệ số cao nhất là -1
Chọn đáp án A
Tìm x: ( mình cần gấp )
a) x(x-1)+x=4
b) 3x(x-5)-2x+10=0
c) 5x2-3x-2=0
d) x4-11x2+18=0
a:Ta có: \(x\left(x-1\right)+x=4\)
\(\Leftrightarrow x^2-x+x=4\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(3x\left(x-5\right)-2x+10=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
c: Ta có: \(5x^2-3x-2=0\)
\(\Leftrightarrow5x^2-5x+2x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)
d: Ta có: \(x^4-11x^2+18=0\)
\(\Leftrightarrow x^4-9x^2-2x^2+18=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)-2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
a) x(x-1)+x=4
⇔x2=4⇔\(x=\pm2\)
b)3x(x-5)-2x+10=0
⇔3x(x-5)-2(x-5)=0
⇔(x-5)(3x-1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
c)5x2-3x-2=0
⇔ 5x(x-1)+2(x-1)=0
⇔ (x-1)(5x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)
d)x4-11x2+18=0
⇔ x2(x2-2)-9(x2-2)=0
⇔ (x2-2)(x2-9)=0
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm3\end{matrix}\right.\)
Giải phương trình
log 3 x 4 − x 3 + 50 x 2 − 60 x + 20 = 3 log 27 13 x 3 − 11 x 2 + 22 x − 2
ta được bốn nghiệm a, b, c, d với a < b < c < d. Tính P = a 2 + c 2 .
A. P = 32.
B. P = 42.
C. P = 22.
D. P = 72.
Đáp án A
Từ phương trình ta suy ra
x 4 − x 3 + 50 x 2 − 60 x + 20 = 13 x 3 − 11 x 2 + 22 x − 2 ⇔ x 4 − 14 x 3 + 61 x 2 − 82 x + 22 = 0 ⇔ x 4 − 8 x + 11 x 2 − 6 x + 2 = 0 ⇔ x = 3 − 7 x = 4 − 5 x = 3 + 7 x = 4 + 5
Ta đã biết phương trình đã cho có 4 nghiệm nên ta có
a = 3 − 7 ; c = 3 + 7 .
Do đó P = a 2 + c 2 = 32.
Phân tích đa thức thành nhân tử:
a) x 4 - 6 x 3 + 12 x 2 - 14x + 3.
b) x 4 + 6 x 3 + 7 x 2 -6x + l.
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).