phân tích đa thức sau thành nhân tử \(^{x^3}^{+3x^2-4}\)
phân tích đa thức sau thành nhân tử: x^3 - 3x^2 + 6x - 4
\(x^3-3x^2+6x-4\)
\(=x^3-2x^2+4x-x^2+2x-4\)
\(=\left(x^3-2x^2+4x\right)-\left(x^2-2x+4\right)\)
\(=x\left(x^2-2x+4\right)-\left(x^2-2x+4\right)\)
\(=\left(x-1\right)\left(x^2-2x+4\right)\)
x^3 - 3x^2 + 6x - 4
<=> x^3-3x^2+3x-1+3x-3
<=>(x-1)^3+3(x-1)
<=>(x-1)+((x-1)^2+3)
<=>(x-1)+(x^2-2x+4)
phân tích đa thức sau thành nhân tử x^4-3x^3-x+3
\(x^4-3x^3-x+3\)
\(=x^4-x^3-2x^3+2x-3x+3\)
\(=\)\(x^3\left(x-1\right)-2x\left(x^2-1\right)-3\left(x-1\right)\)
\(=x^3\left(x-1\right)-2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)\)
\(=\left[x^3-2x\left(x+1\right)-3\right]\left(x-1\right)\)
\(=\left[x^3-2x^2-2x-3\right]\left(x-1\right)\)
\(=\)\(\left[x^3-3x^2+x^2-3x+x-3\right]\left(x-1\right)\)
\(=\left[x^2\left(x-3\right)+x\left(x-3\right)+\left(x-3\right)\right]\left(x-1\right)\)
\(=\left[\left(x-3\right)\left(x^2+x+1\right)\right]\left(x-1\right)\)
\(x^4-3x^3-x+3\)
= \(x\left(x-3\right)-\left(x-3\right)\)
= \(\left(x-1\right)\left(x-3\right)\)
x4 - 3x3 - x + 3
= (x4 - 3x3) - (x + 3)
= x3 (x - 3) - (x - 3)
= (x - 3)(x3 - 1)
Chúc bạn học tốt
phân tích đa thức sau thành nhân tử
a) 3x-3a+yx-ya
b) x^2-9-4(x+3)
`a)3x-3a+yx-ya`
`=3(x-a)+y(x-a)`
`=(x-a)(y+3)`
`b)x^2-9-4(x+3)`
`=(x-3)(x+3)-4(x+3)`
`=(x+3)(x-3-4)`
`=(x+3)(x-7)`
a) \(=3x+yx-\left(3a+ya\right)\) \(=x\left(3+y\right)-a\left(3+y\right)\) \(=\left(3+y\right)\left(x-a\right)\)
b) \(=\left(x-3\right)\left(x+3\right)-4\left(x+3\right)\) \(=\left(x+3\right)\left(x-3-4\right)\) \(=\left(x+3\right)\left(x-7\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
phân tích đa thức thành nhân tử x^5-3x^4+3x^3-x^2
\(=x^5-2x^4+x^3-x^4+2x^3-x^2\)
\(=x^3\left(x^2-2x+1\right)-x^2\left(x^2-2x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^3-x^2\right)\)
\(=\left(x-1\right)^2x^2\left(x-1\right)=\left(x-1\right)^3x^2\)
\(=x^2\left(x^3-1\right)-3x^3\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1-3x\right)\)
\(=x^2\left(x-1\right)\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)\left(x-1\right)^2\)
\(=x^2\left(x-1\right)^3\)
\(x^5-3x^4+3x^3-x^2\)
\(=x^2\left(x^3-3x^2+3x-1\right)\)
\(=x^2\left(x-1\right)^3\)
hk tốt
Phân tích đa thức sau thành nhân tử x² + 3x² - 4.
phân tích các đa thức sau thành nhân tử:
2y ( x+2) -3x - 6
3 (x+4) -x^2 - 4x
2 (x+5) -x^2 -4x
x^2 + 6x -3x -18
a: \(2y\left(x+2\right)-3x-6\)
\(=2y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2y-3\right)\)
b: \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(3-x\right)\)
c: \(2\left(x+5\right)-x^2-4x\)
\(=2x+10-x^2-4x\)
\(=-x^2-2x+10\)
\(=-x^2-2x-1+11\)
\(=11-\left(x^2+2x+1\right)\)
\(=11-\left(x+1\right)^2\)
\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)
d: \(x^2+6x-3x-18\)
\(=\left(x^2+6x\right)-\left(3x+18\right)\)
\(=x\left(x+6\right)-3\left(x+6\right)\)
\(=\left(x+6\right)\left(x-3\right)\)
Phân tích các đa thức sau thành nhân tử
a/ 3x\(^2\) - 3y\(^2\) - 12x + 12y
b/ x\(^2\) - 3x - 4
c/ x\(^2\) – x
a: \(=3\left(x^2-y^2-x+y\right)\)
\(=3\left[\left(x-y\right)\left(x+y\right)-\left(x-y\right)\right]\)
=3(x-y)(x+y-1)
b: =(x-4)(x+1)
c: =x(x-1)
phân tích đa thức thành nhân tử x^4 + 3x^3 - 6x^2 + 3x + 1