Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Tìm điều kiện xác định và rút gọn
A=((a^3+b^3)/(a+b)-ab)/((a^2-b^2)+(2b)/(a+b))
M=(x+(y^2-xy)/(x+y))/((x)/(xy+y^2)+(y^2)/(xy-x^2)-(x^2+y^2)/(xy))
Cho \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)
a) Tìm điều kiện xác định và rút gọn P
b) Tính giá trị của P với \(\left|2x-1\right|=1\)và \(\left|y+1\right|=\frac{1}{2}\)
a/ Thu gọn đơn thức (12/5.x^4 y^2).(5/9 xy^3xy) đó xác định phần hệ số, phần biến và bậc của đơn thức: b/ Tính giá trị của bieur thức 2 3 A x xy y = + − tại x y = = − 2; 1 c/ Tìm đa thức M, biết 2 2 2 2 (2 3 3 7) ( 3 7) x y xy x M x y xy y − + + − = − + + d/ Cho đa thức 2 P x ax x ( ) 2 1 = − + Tìm a, biết: P(2) 7 = Câu 3. (1,5 điểm) Cho các đa thức: A(x) = x3 + 3x2 – 4x – 12 B(x) = x3 – 3x2 + 4x + 18 a. Hãy tính: A(x) + B(x) và A(x) – B(x) b. Chứng tỏ x = – 2 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
Cho biểu thức \(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}\)
a, Tìm điều kiện xác định và rút gọn M
b. Tính giá trị của M ,biết rằng \(x=\left(1-\sqrt{3}\right)^2\)và \(y=3-\sqrt{8}\)
a) ĐKXĐ: \(x,y\ge0\)
\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)
b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)
Tìm điều kiện xác định và phân tích các đa thức sau thành nhân tử:
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(D=\sqrt{x^2+3x+2}+\sqrt{x+1}+2\sqrt{x+2}+2\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
\(ĐKXĐ:x;y\ge0\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x^3}+\sqrt{x^2y}\right)-\left(\sqrt{y^3}+\sqrt{xy^2}\right)\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
C/m rằng a)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
b)x^3-y^3+xy(x-y)=(x-y)(x+y)^2
c)(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
d)(a+b)(a^2-ab+b^2)-(a-b)(a^2+ab+b^2)=2b^3
Giúp mk nha chiều nay mk nộp bài rồi . Cảm ơn các bạn rất nhiều
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
cho các đa thức sau A = x^2+xy-y^2, B = 2x^2 +xy+3y^2 và C =2x^2 - xy - y^2. Hãy xác định đa thức D = A+2B+3C
C/m rằng a)x^3+y^3-xy(x+y)=(x+y)(x-y)^2
b)x^3-y^3+xy(x-y)=(x-y)(x+y)^2
c)(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
d)(a+b)(a^2-ab+b^2)-(a-b)(a^2+ab+b^2)=2b^3
Giúp mk nha chiều nay mk nộp bài rồi . Cảm ơn các bạn rất nhiều
a,ta có : x^3+y^3-xy(x+y)=(x+y)(x^2+y^2-xy) -xy(x+y)=(x+y)(x^2+y^2-2xy=(x+y)(x-y)^2
(đpcm)
b)x^3-y^3+xy(x-y)=(x-y)(x^2+y^2+xy)+xy(x-y)=(x-y)(x^2+y^2+2xy)=(x-y)(x+y)^2 (đpcm)
c)(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=(a^3+b^3)+(a^3-b^3)==2a^3 (đpcm)