Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Ngân
Xem chi tiết
Lung Thị Linh
13 tháng 2 2016 lúc 22:54

Mình mới học lớp 5 nên không trả lời được

Jin Air
13 tháng 2 2016 lúc 22:57

là sao??? câu thứ 2 là như thế nào? giải thích giùm cái đề. làm đc thì mình giúp

Tiểu Thư Họ Nguyễn
13 tháng 2 2016 lúc 22:57

mình mới học lớp 6 thôi à.

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Linh Chi
5 tháng 7 2019 lúc 16:03

Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link trên nhé!

Vũ Vân Anh
Xem chi tiết
yunaaaa
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 22:50

\(=x^3\left(x+2\right)-x\left(x+2\right)\)

\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)

Vì đây là tích của bốn số nguyên liên tiếp

nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)

Trần Tiến Đạt
Xem chi tiết
Trần Văn Trường
17 tháng 5 2022 lúc 19:24

ghi ko hiểu j hết mẹ!!???????

Phạm Thị Chi Mai
Xem chi tiết
Yuuki
Xem chi tiết
Tran Tri Hoan
Xem chi tiết
Akai Haruma
27 tháng 2 2021 lúc 23:02

Lời giải:

Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$

Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng

$\Rightarrow n$ chia hết cho $2$

Mặt khác:

\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$

$\Rightarrow \frac{n}{2}$ chẵn

$\Rightarrow n$ chia hết cho $4$ (đpcm)

 

15 Trần Long Nhật-7a7
Xem chi tiết
15 Trần Long Nhật-7a7
14 tháng 11 2021 lúc 19:41

giải được tui cho chàng vỗ tay

Đỗ Đức Hà
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 18:01

Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$

Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$

Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$

Tổng số số hạng: $n=k+k=2k$ 

Lại có:

$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$

$\Rightarrow k$ chẵn 

$\Rightarrow n=2k\vdots 4$