chứng minh rằng x6m+4 + x6n+2 +1 chia hết cho x4 + x2 +1
Cho n số x1, x2, x3, ..., xn, mõi số bằng 1 hoặc -1. Biết rằng tổng của n tích x1.x2, x2.x3, x3.x4, ..., xn.x1 bằng 0. Chứng minh rằng n chia hết cho 4
Mình mới học lớp 5 nên không trả lời được
là sao??? câu thứ 2 là như thế nào? giải thích giùm cái đề. làm đc thì mình giúp
cho n số x1,x2,x3..,xn mỗi số nhận giá trị 1 hoặc -1 . Chungws minh rằng nếu x1.x2+x3.x4+...+xn.x1=0 thì n chia hết cho 4
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Cho n số : X1 ; X2 ; X3 ; ......;Xn . mỗi số có giá trị bằng 1 hoặc -1
Chứng minh rằng nếu X1.X2 + X2.X3 + X3.X4 + ....+ Xn.X1 = 0 thì n chia hết cho 4
Bạn nào giải nhanh , đúng và đầy đủ nhất mik tick cho!!
Mik cần gấp
Chứng minh rằng đa thức x4 + 2x3 - x2 - 2x chia hết cho 24 với mọi x thuộc Z
giúp mk nhanh vs ạ
\(=x^3\left(x+2\right)-x\left(x+2\right)\)
\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)
Vì đây là tích của bốn số nguyên liên tiếp
nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)
Cho (x2)^2=x1.x3;(x3)^2=x2.x4.Chứng minh rằng: (x1+x2+x3)^2/(x2+x3+x4)^2=x1^2+x2^2+x3^3/x2^2+x3^3+x4^4
cho phương trình (x+1)(x+2)(x+3)(x+4)=m
biết rằng phương trình đã cho có 4 nghiệm phân biệt x1,x2,x3,x4x1,x2,x3,x4
chứng minh x1.x2.x3.x4=24−m
Cho n số X1, X2, X3, ...,Xn với Xk = 1 hoặc -1 (k = 1, 2, 3, ..., n). Chứng minh rằng nếu X1*X2 + X2*X3 +... + Xn - 1Xn thì n chia hết cho 4
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Lời giải:
Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng
$\Rightarrow n$ chia hết cho $2$
Mặt khác:
\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n$ chia hết cho $4$ (đpcm)
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
giải được tui cho chàng vỗ tay
Cho n số x1, x2, ..., xn ,mỗi số nhận giá trị 1 hoặc -1.
Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$
Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$
Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$
Tổng số số hạng: $n=k+k=2k$
Lại có:
$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$
$\Rightarrow k$ chẵn
$\Rightarrow n=2k\vdots 4$