Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tran Tri Hoan

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Akai Haruma
27 tháng 2 2021 lúc 23:02

Lời giải:

Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$

Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng

$\Rightarrow n$ chia hết cho $2$

Mặt khác:

\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$

$\Rightarrow \frac{n}{2}$ chẵn

$\Rightarrow n$ chia hết cho $4$ (đpcm)

 


Các câu hỏi tương tự
BÍCH THẢO
Xem chi tiết
nguyen hong long
Xem chi tiết
nguyen hong long
Xem chi tiết
nguyen hong long
Xem chi tiết
Nguyễn Thanh Quân lớp 7/...
Xem chi tiết
Hòa Đình
Xem chi tiết
Quốc Huy
Xem chi tiết
Yui Arayaki
Xem chi tiết
Phạm Trọng An Nam
Xem chi tiết