Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CR7 victorious
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 22:26

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)

Hoàng Hạ Nhi
Xem chi tiết
Kuri
6 tháng 8 2016 lúc 7:51

a) a2 + b2 + c2 = ab + ac + bc

=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c)2 + (b - c)2 = 0 

Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0

=> a = b = c 

Kuri
6 tháng 8 2016 lúc 8:04

b) a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

=> a3 + 3a2b + 3ab+ b3 + c3 - 3abc - 3a2b - 3ab2 = 0

=> (a + b)3 + c3 - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0 

=> a + b + c = 0

hoặc a2 + b2 + c2 = ab + bc + ac =>  a = b = c

JOKER_Võ Văn Quốc
6 tháng 8 2016 lúc 9:07

a)\(a^2+b^2+c^2=ab+bc+ca\)\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)

b)\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Chira Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 13:40

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4ac-4bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac-4a^2-4b^2-4c^2+4ab+4bc+4ac=0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow-\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)(đpcm)

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Đức Trí
27 tháng 7 2023 lúc 0:56

Ta có :

\(\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

\(\Rightarrow dpcm\)

Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
8 tháng 12 2017 lúc 21:10

Tại hạ đã biết là thánh học lớp 8 limdim

Cao :\_________________________________/

Trần Thị Ngát
Xem chi tiết
lộc Nguyễn
Xem chi tiết
Nguyễn Hải Minh
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Khách vãng lai đã xóa
Nguyễn Thị Sao Mai
Xem chi tiết
Đinh Đức Hùng
20 tháng 4 2017 lúc 17:22

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\forall a;b;c}\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

Vậy \(a=b=c\)

Le Thi Khanh Huyen
Xem chi tiết
Devil Girl
19 tháng 7 2016 lúc 20:32

\(Ta\)\(có\):\(\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)\(Mà\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)\(=1+2\left(ab+ac+bc\right)=0\Rightarrow2\left(ab+ac+bc\right)=-1\)\(\Rightarrow a^2+b^2+c^2=2\left(ab+bc+ac\right)\)

Devil Girl
19 tháng 7 2016 lúc 20:34

Xl nha dòng cuối mik ghi nhầm

Phài là \(a^4+b^4+c^4=2\left(ab+bc+ac\right)\)