cho a/b=c/d, chứng minh : (2a+3b)(4c-5d)= (4a-5b)(2c+3d)
cho a/b = c/d chứng minh 2a-3b/4a+5b =2c-3d/4c+5d
vì a/b=c/d nên => a/c=b/d
đặt a/c=b/d =k thì => a=ck ; b= dk
thay a=ck và b=dk vào 2a-3b/4a+5b có
\(\frac{2a-3b}{4a+5b}=\frac{2ck-3dk}{4ck+5dk}=\frac{k\left(2c-3d\right)}{k\left(4c+5d\right)}=\frac{2c-3d}{4c+5d}\)
từ đay suy ra 2a-3b/4a+5b=2c-3d/4c+5d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng tỉ lệ thức ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)
b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng tỉ lệ thức ta có "
\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Các câu còn lại bạn làm tương tự
Chứng minh \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:
a)
\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)
\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)
\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)
b)
\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)
\((b+d).a=(b+d).bk=bk(b+d)\)
\(\Rightarrow (a+c)b=(b+d)a\)
c)
\(a(b-d)=bk(b-d)\)
\(b(a-c)=b(bk-dk)=bk(b-d)\)
\(\Rightarrow a(b-d)=b(a-c)\)
d)
\((b+d).c=(b+d).dk=dk(b+d)\)
\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)
\(\Rightarrow (b+d)c=(a+c)d\)
e)
\((b-d).c=(b-d).dk=dk(b-d)\)
\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)
\(\Rightarrow (b-d)c=(a-c)d\)
f)
\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)
\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)
\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)
g)
\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)
\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)
\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)
h)
\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)
\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)
\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)
i,k: Hoàn toàn tương tự.
cho tỉ lệ thức : a/b=c/d. Chứng minh
a) 3a+5b/3a-5b=3c+5d/3c-5d
b) 2a+3b/2a-3b=2c+2c-3d
( 2a + 3b) x ( 4c - 5d) = (4a - 5b) x (2c + 3d)
cho a/b=c/d CMR
a, a-b/a+b = c-d/c+d
b, 2a+3b/2c+3d = 4a-5b/4c-5d
AI GIÚP MIK VS Ạ
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)
\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)
\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)
\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)
b)\(\text{Tương tự*}\)
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)
\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)
\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:
\(\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Giúp mình nha mai phải nộp bài r
Từ a/b = c/d => a/c = b/d => 2a/2c = 3b/ 3d = 2a + 3b / 2c + 3d (1)
Cx từ a/b =c/d => a/c = c/d => 4a/4c = 5b/5d = 4a - 5b / 4c-5d (2)
Mà 2a/ 2c = 4a/ 4c (3)
Từ (1) (2) (3) => đpcm
mk chỉ nghĩ như thế thôi chứ ko bt đúng hay sai nha