Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị hương giang
Xem chi tiết
nguyễn hồng quân
Xem chi tiết
Phạm Ngọc Thạch
4 tháng 8 2015 lúc 19:19

a) \(\frac{67}{77}=1-\frac{10}{77};\frac{73}{83}=1-\frac{10}{83}\)

Vì \(\frac{10}{77}>\frac{10}{83}\) nên \(1-\frac{10}{77}

việt Nguyễn Hải
12 tháng 8 2016 lúc 19:42

h tui k tui giet ken

Adam Trần
Xem chi tiết
Katherine Lilly Filbert
15 tháng 7 2015 lúc 9:03

Bài dễ mà you ko tự suy nghĩ được, đúng là lười suy nghĩ

Conan Edogawa
15 tháng 7 2015 lúc 9:09

a) 2561=(52)61=52.61=5122

Vì 122>120 nên 5122>5120 hay 2561>5120

b) 1680 = (42)80= 42.80=4160

Vì 160>65 nên 4160>465 hay 1680>465

Mấy câu khác tự làm 

 

Hoang viet anh
14 tháng 4 2016 lúc 17:00

bài này mà cũng ko biết á

Nguyễn Thanh Huyền
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
6 tháng 10 2023 lúc 11:35

`#3107.101107`

a)

`64^150` và `4^450`

Ta có:

`64^150 = (4^3)^150 = 4^(3*150) = 4^450`

Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`

Vậy, `64^150 = 4^450`

b)

`81^64` và `27^100`

Ta có:

`81^64 = (3^4)^64 = 3^(4*64) = 3^256`

`27^100 = (3^3)^100 = 3^(3*100) = 3^300`

Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`

Vậy, `81^64 < 27^100`

c)

`125^1000` và `25^3000`

Ta có:

`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`

Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`

Vậy, `125^1000 < 25^3000`

d)

`4^30` và `3^40`

Ta có:

`4^30 = 4^(3*10) = (4^3)^10 = 64^10`

`3^40 = 3^(4*10) = (3^4)^10 = 81^10`

Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`

Vậy, `4^30 < 3^40`

m)

`2^5000` và `5^2000`

Ta có:

`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`

`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`

Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`

Vậy, `2^5000 > 5^2000`

h)

`6^450` và `3^750`

Ta có:

`6^450 = 6^(150*3) = (6^3)^150 = 216^150`

`3^750 = 3^(150*5) = (3^5)^150 = 243^150`

Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`

Vậy, `6^450 < 3^750`

0)

`333^444` và `444^333`

Ta có:

`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`

`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`

Vì `81 > 64;` `111^444 > 111^333`

`=> 81^111 * 111^444 > 64^111 * 111^333`

Vậy, `333^444 > 444^333.`

HT.Phong (9A5)
6 tháng 10 2023 lúc 11:34

a) Ta có:

\(64^{150}=\left(2^6\right)^{150}=2^{900}\)

\(4^{450}=\left(2^2\right)^{450}=2^{900}\)

Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)

b) Ta có:

\(81^{64}=\left(3^4\right)^{64}=3^{256}\)

\(27^{100}=\left(3^3\right)^{100}=3^{300}\)

Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)

c) Ta có: 

\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)

Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)

d) Ta có:

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

\(3^{40}=\left(3^4\right)^{10}=81^{10}\)

Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)

m) Ta có:

\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)

\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)

Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)

h) Ta có:

\(6^{450}=\left(6^3\right)^{150}=216^{150}\)

\(3^{750}=\left(3^5\right)^{150}=243^{150}\)

Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)

.... 

Kiều Vũ Linh
6 tháng 10 2023 lúc 11:39

a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰

b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶

27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰

Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰

Vậy 81⁶⁴ < 27¹⁰⁰

c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰

Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰

Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰

d) 4³⁰ = (4³)¹⁰ = 64¹⁰

3⁴⁰ = (3⁴)¹⁰ = 81¹⁰

Do 64 < 81 nên 64¹⁰ < 81¹⁰

Vậy 4³⁰ < 3⁴⁰

m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰

5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰

Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰

Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰

h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰

3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰

Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰

Vậy 6⁴⁵⁰ < 3⁷⁵⁰

o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹

444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹

= (4³.111³)¹¹¹ = (64.111³)¹¹¹

Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)

Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)

Từ (1) và (2) ⇒ 81.111⁴ > 64.111³

⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹

Vậy 333⁴⁴⁴ > 444³³³

NGuyễn đình duy hưng
Xem chi tiết
Nguyễn Đức Trí
10 tháng 8 2023 lúc 22:08

a) Ta có :

\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)

\(\Rightarrow27^{27}>243^{13}\)

\(\Rightarrow-27^{27}< -243^{13}\)

\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)

b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)

\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)

\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)

c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)

\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)

\(\Rightarrow4^{50}>8^{30}\)

d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)

\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)

Vũ Tuệ Lâm
10 tháng 8 2023 lúc 23:40

a) Ta có :

2727>2726=(272)13=72913>24313

⇒2727>24313

⇒−2727<−24313

⇒(−27)27<(−243)13

b) (18)25>(18)26=(182)13=(164)13>(1128)13

⇒(18)25>(1128)13

⇒(−18)25<(−1128)13

c) 450=(45)10=102410

830=(83)10=51210<102410

⇒450>830

d) (19)17<(19)12<(127)12

⇒(19)17<(127)12

Đại Nguyễn
Xem chi tiết
Đinh Thùy Linh
6 tháng 7 2016 lúc 10:12

\(S=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(\left(3^2-1\right)S=4\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(8S=4\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(2S=\left(3^8-1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

...

\(2S=3^{128}-1\)

Vậy S < 3128 - 1

Lương Thị Lan
Xem chi tiết
Nhung Do
3 tháng 10 2015 lúc 19:59

2A=8(32+1)(34+1)......(364+1)

2A=(32-1)(32+1)(34+1)......(364+1)

2A=(34-1)((34+1)....(364+1)

2A=(364-1)(364+1)

2A=3128-1

Ta có :2A=B=>A<B

hanazawa rui
Xem chi tiết
Xyz OLM
14 tháng 9 2020 lúc 15:30

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}\)

\(=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)-2\times\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}\)

\(=\frac{1}{128}\)< 1

Khách vãng lai đã xóa
hanazawa rui
14 tháng 9 2020 lúc 15:43

còn 1 cách nữa mk lm nhưng ko chắc nên hỏi

1/2-(1/4+1/8+1/32+1/64+1/128)

=1/2-(1/2-1/4+1/4-1/8+1/8-1/32+1/32-1/64+1/64-1/128)

=1/2-(1/2-1/128)

=1/2-63/128

=1/128

Khách vãng lai đã xóa
bntghg
Xem chi tiết