tìm đa thức g(x) rồi tìm nghiệm của g(x) 8x^2y - x^3 + 3x^2 + g(x) = 8x^2y - x^3 - 6x
Cho đa thức :f(x)=x^4-2x^2+4x+8x^3 và G(x) =6+8x^3-3x^2+4x
a, Tính F(-1)
b,Tính H(x) = F(x) - G(x)
c, Đa thức H(x) có nhiều nhất bao nhiêu nghiệm . Tìm nghiệm của đa thức H(x)
a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3
=1-2+(-4)+(-8)
=-9
b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)
=x4-2x2+4x+8x3-6-8x3+3x2+4x
=x4+x2+8x-6
t là nốt câu c):
Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.
Làm lại câu b) của bạn kia tí nhé:
b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)
c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.
\(H\left(x\right)=x^4+3x^2-2x^2-6\)
\(=\left(x^2-2\right)\left(x^2+3\right)=0\)
Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Cho f(x) + g(x) = 6x^4 - 3x^2 - 5
f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9
Tìm các đa thức f(x) và g(x)
=> 2 f(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
= 10x^4 - 6x^3 + 4x^2 + 8x - 14
=> 2.f ( x ) = 2 ( 5x^4 - 3x^3 + 2x^2 + 4x - 7 )
=> ( fx) = 5x^4 - 3x^3 + 2x^2 + 4x - 7
g(x) tự tìm
ta có:
f(x) + g(x) = 6x^4 - 3x^2 - 5
f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9
công hai vế lại với nhau ta được:
f(x)+g(x)+f(x)-g(x)=6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
=>2f(x)=6x4+4x4-6x3-3x2+7x2+8x-5-9
2f(x)=10x4-6x3+4x2+8x-14
2f(x)=2.(5x4-3x3+2x2+4x-7)
=>f(x)=5x4-3x3+2x2+4x-7
=>g(x)=6x^4 - 3x^2 - 5 -(5x4-3x3+2x2+4x-7)
=6x4-3x2-5-5x4+3x3-2x2-4x+7
=6x4-5x4+3x3-3x2-2x2-4x-5+7
=x4+3x3-5x2-4x+2
Bài 2: Chứng to rằng các đa thức sau vô nghiệm:
a) f(x) = x +x+1
b) g(x) = x - x+1
c) mx)=(x-1)² +(x-2)
d) e(x) = |x-1+|x-2|
Bài 4: Tìm nghiệm của đa thức sau:
a) f(x)= x -2x-4
b) g(x) = x² + x +4
c) mx) = 8x - 12x +6x-2
d) n(x)= x+3x +3x+2
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
Cho f(x)+g(x)=6x4-3x2-5
f(x)-g(x)=4x4-6x3+7x2+8x-9
Tìm các đa thức f(x),g(x)
Cho hai đa thức f(x)= x5 + x3 -4x- x5 +3x +7 và g(x)= 3x2-x3+8x-3x2-14. Tính f(x)+g(x) và tìm nghiệm của đa thức f(x)+g(x).
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
tìm nghiệm của đa thức g(x):x^3+8x
\(g\left(x\right)=x^3+8x=x\left(x^2+8\right)\)
Để g(x) có nghiệm => \(x\left(x^2+8\right)\)=0
=> x=0 (vì x2+8 >0 với mọi x)
Vậy x=0 là nghiệm của đa thức
g(x) = x3 + 8x
g(x) = 0 <=> x3 + 8x = 0
<=> x(x2 + 8) = 0
<=> x = 0 hoặc x2 + 8 = 0
* x2 + 8 = 0 => x2 = -8 ( vô lí )
=> x = 0
Vậy nghiệm của g(x) là 0
\(g\left(x\right)=x^3+8x\)
\(x\left(x^2+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+8=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=-8\end{cases}}\)
=>x=-8 (vô lí)
=>x=0
Vậy nghiệm của đa thức là 0
1. A= 3 - xy
Cho x + 2y=1
Tìm giá trị lớn nhất của A=xy
2. Cho f(x) + g(x) = 6x4 - 3x2 - 5
f(x) - g(x) =4x4 - 6x3 + 7x2 + 8x = 9
Hãy tính f(x) ; g(x)
Cho đa thức g(x)=8x3 - 18x2 +x +6
a) Tìm các nghiệm của đa thức g(x)
b) Tìm các hệ số a, b, c của đa thức bậc ba f(x)=x3 + ax2 +bx+c, biết rằng khi chia đa thức f(x) cho đa thức g(x) thì được đa thức dư là r(x)=8x2+4x+5.
Giải MTCT
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
9 Phân tích đa thức sau thành nhân tử:
a) 9xy^2-18x^2y ; b) 6x^2-2y ; c)7x(x-y)-14y(y-x)
d)7-x^2 ; e) 16+8x+x^2 ; f)1-27x^3
g) x^3-9x^2+27x-27 ; h) (x+2y)^2-16y^2 ; i) x^3-64y^3