Tính diện tích tam giác ABC bik AB=8cm, AC =12 cm và góc A là 30độ
Tính diện tích tam giác ABC bik AB=8cm, AC =12 cm và góc A là 30độ
Cho tam giác ABC vuông tại A , AB=6cm AC=8cm vào đường cao AH
a) cm Tam giác đồng dạng tam giác HBA Tính AE
b) tính độ dài BC , AH , BH , CH
c) gọi BD là phân giác của góc ABC ( D thuộc AC ) tính diện tích tam giác ABD
a: BC=10cm
Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
cho tam giác abc, góc A=90°, góc B =60°, AB=8cm a) tính góc C, cạnh Ac và BC b) tính diện tích tam giác ABC
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
Theo định lý sin ta có:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)
Mà: ΔAEC vuông tại E ta có:
\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)
ΔABD vuông tại D nên ta có:
\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)
Theo định lý sin ta có:
\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)
\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)
Cho tam giác ABC vuông tại A biết AM = 6 cm , AC=8cm đường cao AH. Gọi DE lần lượt là chân đường vuông góc kẻ từ H đến AB và AC .
a, Tính diện tích tam giác ABC
b, Chứng minh : AM=DE
c,Kẻ trung tuyến AM của tam giác ABC. Chứng minh : AM vuông góc DE
cho tam giác ABC vuông ở A , đường cao AH. M và N là chân đường vuông góc kẻ từ H đến AB,AC
a) CM : TỨ GIÁC AMHN LÀ HÌNH CHỮNHAJAT
b) CM : AH . AH =BH.CH VÀ AH.BC=AB.AC
c) CHO AB=8CM , AC=6CM TÍNH DIỆN TÍCH TAM GIÁC AMN
GIẢI HỘ E VS Ạ
a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
hay \(AH\cdot AH=BH\cdot CH\)
Ta có: \(S_{BAC}=\dfrac{AH\cdot BC}{2}\)(AH là đường cao ứng với cạnh BC)
mà \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(ΔABC vuông tại A)
nên \(AH\cdot BC=AB\cdot AC\)
1. Tính diện tích của một hình thang cân biết hai đáy là 12 cm và 18 cm Góc ở đáy là 75 Độ
2. Tính diện tích của một hình bình hành có hai cạnh là 12 cm và 15 cm góc tạo bởi 2 cạnh ấy là 110 độ
3. Cho tam giác ABC góc A bằng 75 Độ AB bằng 30 cm BC = 35 cm Tính AC và dịch tiếp tam giác abc
Cho tam giác ABC có diện tích là 12 cm vuông . AB=8cm , AC=5cm.Trên AB kéo dài về phía B lấy điểm M và trên AC kéo dài về phía C lấy điểm N sao cho BM=CN=2cm.
a) so sánh diện tích tam giác BMN với diện tích tạm giam ABN
b) tính diện tích tam giác BNC
c) tính diện tích tứ giác BCNM
đ) tính diện tích tam giác AMN
Bài làm :
a,Ta thấy tam giác ABN và tam giác BMN có chung chiều cao
Đáy AB gấp 4 lần đáy BM
Từ trên ta có thể kết luận rằng : Tam giác ABN gấp 4 lần Tam giác BMN
b, Chiều cao của tam giác BNC bằng chiều cao của tam giác ABC
Chiều cao của tam giác BNC là : 12 x 2 : 8 = 3 cm
Diện tích tam giác BNC là : 2 x 3 : 2 = 3 cm2
c, Ta thấy tam giác BNC và tam giác BMN có chiều cao và đáy bằng nhau
tam giác BMN có Diện tích = tam giác BNC = 3 cm2
Diện tích tứ giác BCMN là : 3 + 3 = 6 cm2
d, tam giác AMN có chiều cao bằng tam giác ABC = 3 cm ( có 2 cách )
Đáy AM là : 8 + 2 = 10 cm
Diện tích tam giác AMN là : 3 x 10 : 2 = 15 cm2