Chứng minh rằng \(\sqrt{2}\) là số vô tỉ.
Các bạn giúp mk nha.Cảm ơn các bạn nhiều
HÔM NAY MÌNH PHẢI NỘP RỒI .MK CẦN GẤP!!
Tìm x; y là số nguyên tố biết:49 × X + 11 × Y = 224
Các bạn giúp mk nha.Cảm ơn nhiều.
Có thể chứng minh rằng các số √2 , √3 , √5, √6,... là những số vô tỉ.
CÁC BẠN ƠI ! GIÚP MÌNH VỚI, CẢM ƠN CÁC BẠN NHÌU NHA
giả sử \(\sqrt{2}\)là số hữu tỉ nên \(\sqrt{2}=\frac{a}{b}\)(với a;b có ước chung lớn nhất là 1)
bình phương 2 vế ta được a2 =2b2 => a2 chia hết cho 2 => a2 chia hết cho 4 => a2 = 4m (m\(\in N\)*) = 2b2
=> b2 =2m => b2 chia hết cho 2 => b chia hết cho 2 => a và b có ước chung lớn nhất khác 1( vô lý)
vậy \(\sqrt{2}\)là số vô tỉ
làm tương tư với các số còn lại
Chứng minh rằng \(\sqrt{2}\) là số vô tỉ.
Các bạn giúp mk nha. Mk đang cần gấp. Thanks!!!
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Để chứng minh: "{\displaystyle {\sqrt {2}}} là một số vô tỉ" người ta còn dùng phương pháp phản chứng theo một cách khác, cách này ít nổi tiếng hơn cách ở trên.
Giả sử rằng {\displaystyle {\sqrt {2}}} là một số hữu tỉ. Điều này có nghĩa là tồn tại hai số nguyên dương m và n sao cho m/n = {\displaystyle {\sqrt {2}}}.Biến đổi đẳng thức trên, ta có: m/n = (2n - m)/(m - n).Vì {\displaystyle {\sqrt {2}}} > 1, nên từ (1) suy ra m > n {\displaystyle \Leftrightarrow } m > 2n - m.Từ (2) và (3) suy ra (2n - m)/(m - n) là phân số rút gọn của phân số m/n.Từ (4) suy ra, m/n không thể là phân số tối giản hay {\displaystyle {\sqrt {2}}} không thể là số hữu tỉ - mâu thuẫn với giả thiết {\displaystyle {\sqrt {2}}} là một số hữu tỉ. Vậy {\displaystyle {\sqrt {2}}} phải là số vô tỉ.
Cho n thuộc N*. Chứng minh rằng số A = 111...1 ( n chữ số 1 )2111...1 ( n chữ số 1 ) là hợp số Các bạn giải chi tiết ra giúp mk với nhá mk xem trên mạng nhiều rồi nhưng ko hiểu !
cảm ơn các bạn
11.
a) CMR \(\sqrt{3}\) là số vô tỉ.
b) Nếu số tự nhiên a ko phải là số chính phương thì CMR \(\sqrt{a}\) là số vô tỉ.
Giúp mình với mình cảm ơn các bạn rất nhiều!
Cho p và p^2+3 là các số nguyên tố.Chứng minh rằng p^5+5 cũng là số nguyên tố. CÁC BẠN GIÚP MÌNH NHANH NHA.CẢM ƠN NHIỀU!
Vì p và p2+3 là số nguyên tố => p chỉ có thể là số lẻ hoặc p = 2 là số chẵn
Xét p2+3 là số lẻ => p2 là số chẵn trái với p là số nguyên tố
=> p = 2
=> p5+5=25+5=32+5=37 . Mà 37 là số nguyên tố
=> ĐPCM
chứng minh rằng n2 - n + 2 là số chính phương
Mong các bạn giúp mình với :* cảm ơn nhiều
Các bạn giúp mình bài này với !!! Cảm ơn rất nhiều!!!
Cho x,y là số thực thỏa mãn điều kiện: \(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}=1\)Chứng minh rằng \(x^2+y^2=1\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)
\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)
\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)
Cho các số thực dương a; b và c. Chứng minh rằng : \(\sqrt{a^2+5ab+10b^2}+\sqrt{b^2+5bc+10c^2}+\sqrt{c^2+5ac+10a^2}\ge4.\left(a+b+c\right)\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
\(VT=\sqrt{\left(a+\dfrac{5b}{2}\right)^2+\dfrac{15b^2}{4}}+\sqrt{\left(b+\dfrac{5c}{2}\right)^2+\dfrac{15c^2}{4}}+\sqrt{\left(c+\dfrac{5a}{2}\right)^2+\dfrac{15a^2}{4}}\)
\(\Rightarrow VT\ge\sqrt{\left(a+\dfrac{5b}{2}+b+\dfrac{5c}{2}+c+\dfrac{5a}{2}\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\sqrt{\dfrac{49}{4}\left(a+b+c\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}=4\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)