Viết biểu thức sau thành tích :
(x - y)\(^3\)- 1 - 3(x - y)(x - y -1)
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
viết biểu thức sau dới dạng tích
a/ x^2-2
b/ y^3-13
c/ 2x^2-4
d/ (x-1)^3-(y+1)^3
a) \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
b) \(y^3-13=\left(y-\sqrt{13}\right)\left(y^2+\sqrt{13}y+13\right)\)
c) \(2x^2-4=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\)
d) \(\left(x-1\right)^3-\left(y+1\right)^3=\left(x-1-y-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]=\left(x-y-2\right)\left(x^2-2x+1+xy-y+x-1+y^2+2y+1\right)=\left(x-y-2\right)\left(x^2+y^2-x+y+xy+1\right)\)
a. x2 - 2
<=> x2 - \(\left(\sqrt{2}\right)^2\)
<=> (x - \(\sqrt{2}\))(x + \(\sqrt{2}\))
b. y3 - 13
<=> y3 - \(\left(\sqrt[3]{13}\right)^3\)
<=> \(\left(y-\sqrt[3]{13}\right)\left[y^2+\sqrt[3]{13}y+\left(\sqrt[3]{13}\right)^2\right]\)
c. 2x2 - 4
<=> \(\left(x\sqrt{2}\right)^2\) - 22
<=> \(\left(x\sqrt{2}-2\right)\left(x\sqrt{2}+2\right)\)
d. (x - 1)3 - (y + 1)3
\(\Leftrightarrow\left[\left(x-1\right)-\left(y+1\right)\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\Leftrightarrow\left(x-1-y-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\Leftrightarrow\left(x-y-2\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
Bài 1:
Cho ba số thực x,y,z khác 0 thỏa mãn (x+y+z)^2= x^2+y^2+z^2. Chứng minh rằng 1/x+1/y+1/z =0
Bài 2: Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu
-8x^6 - 12^4 - 6x^2- y^3
Bài 3:Viết biểu thức sau dưới dạng tích
1/9-(2x-y)^2
giúp mình với ạ, mình đang cần gấp ạ. Cảm ơn ạ!
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
1. Phân tích đa tức thành nhân tử: (x-2)(x-4)(x-6)(x-9)+15
2. Tính giá trị biểu thức sau, biết x^3 -x=6. A=x^6 -2x^4 +x^3 +x^2 -x
3.Cho x, y là 2 số khác nhau thỏa manc: x^2 +y=y^2 +x. Tính giá trị biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
Viết tổng sau thành tích :(x-y)^3-1-3(x-y)(x-y-1)
Câu 1 Rút gọn biểu thức sau :P=2.(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
Câu 2 Phân tích đa thức sau thành nhân tử
a/ x^3-2x^2-4xy^2+x
b/(x+1)(x+2)(x+3)(x+4)-24
Câu 3 Tìm x biết (x+2)^2=4-x^2
Câu 4 Cho x,y là 2 số khác nhau thỏa mãn x^2+y=y^2+x Tính giá trị của biểu thức A=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y)
câu 1.
P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
P= (x+y+x-y)^2-(2y)^2
P=(2x-2y)(2x+2y)
P=4(x^2-y^2)
câu 2.
a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2
=x(x-1)^2-4xy^2
=x(x-1-2y)(x-1+2y)
b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+4= a
Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24
= a^2+2a-24
=a^2+2a+1-25
= (a+1)^2-5^2
= (a+1-5)(a+1+5)
= (a-4)(a+6)
mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)
= (x^2+5x)(x^2+5x+10)
câu3. (x+2)^2= 4-x^2
=> (x+2)^2-4+x^2=0
=>. (x+2)^2-(2-x)(2+x)=0
=> (x+2)(x+2-2+x)=0
=> (x+2)2x=0
=> x+2=0 hoặc 2x=0
=> x=-2 hoặc x=0
1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 . 3) <=> x^2+4x+4-4+x^2=0
<=> 2x^2+4x=0 <=>2x(x+2)=0 <=>2x=0 hay x+2=0 <=>x=0 hay x=-2
Viết tổng sau thành tích :(x-y)^3-1-3(x-y)(x-y-1)
= [\(\left(x-y\right)^3\)\(-1\)] - \(\left[3\left(x-y\right)\left(x-y-1\right)\right]\)
= \(\left\{\left(x-y-1\right)\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]\right\}\)- \(\left[3\left(x-y\right)\left(x-y-1\right)\right]\)
= \(^{\left(x-y-1\right)\left[\left(x-y\right)^2+2\left(x-y\right)+1-3\left(x-y\right)\right]}\)
= \(\left(x-y-1\right)\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]\)
= \(\left(x-y-1\right)\left(x-y-1\right)^2\)
= \(^{\left(x-y-1\right)^3}\)
T*ck mình nha. Suy nghĩ bài này cực lắm đó!
= (x-y-1) [(x-y)^2 + (x-y) + 1] - 3(x-y)(x-y-1)
= (x-y-1) [(x-y)^2 + (x-y) + 1 - 3(x-y)]
= (x-y-1) [(x-y)^2 - 2(x-y)+1]
= (x-y-1)(x-y-1)^2
=(x-y-1)^3
Câu 17. a) Phân tích đa thức sau thành nhân tử: a) 5(x - y) - 3x(y - x)
b) Viết biểu thức sau dưới dạng bình phương của một hiệu:x2 - 4xy + 4y2
c) Tìm x biết: (x – 1)2 + x(5– x) = 0
\(a,5\left(x-y\right)-3x\left(y-x\right)=5\left(x-y\right)+3x\left(x-y\right)=\left(5+3x\right)\left(x-y\right)\\ b,x^2-4xy+4y^2=\left(x-2y\right)^2\\ c,\left(x+1\right)^2+x\left(5-x\right)=0\\ \Rightarrow x^2+2x+1+5x-x^2=0\\ \Rightarrow7x+1=0\\ \Rightarrow7x=-1\\ \Rightarrow x=-\dfrac{1}{7}\)
a: =(x-y)(5+3x)
c: \(\Leftrightarrow x^2-2x+1+5x-x^2=0\)
hay x=-1/3